Header

UZH-Logo

Maintenance Infos

Texture analysis and machine learning of non-contrast T1-weighted MR images in patients with hypertrophic cardiomyopathy-Preliminary results


Baeßler, Bettina; Mannil, Manoj; Maintz, David; Alkadhi, Hatem; Manka, Robert (2018). Texture analysis and machine learning of non-contrast T1-weighted MR images in patients with hypertrophic cardiomyopathy-Preliminary results. European Journal of Radiology, 102:61-67.

Abstract

PURPOSE To test in a first proof-of-concept study whether texture analysis (TA) allows for the detection of myocardial tissue alterations in hypertrophic cardiomyopathy (HCM) on non-contrast T1-weighted cardiac magnetic resonance (CMR) images using machine learning based approaches. METHODS This retrospective, IRB-approved study included 32 patients with known HCM. Thirty patients with normal CMR served as controls. Regions-of-interest for TA encompassing the left ventricle were drawn on short-axis non-contrast T1-weighted images using a freely available software package. Step-wise dimension reduction and texture feature selection was performed for selecting features enabling the detection of myocardial tissue alterations in HCM patients on non-contrast T1-weighted CMR images. RESULTS Comparing HCM patients and controls, four texture features were identified showing significant differences between groups (Grey-level Non-uniformity [GLevNonU]: 74 ± 17 vs. 38 ± 9, p < .001; Energy of wavelet coefficients in low-frequency sub-bands [WavEnLL]: 58 ± 5 vs. 48 ± 10, p < .001; Fraction: 0.70 ± 0.07 vs. 0.78 ± 0.05, p < .001; Sum Average: 16.6 ± 0.4 vs. 17.0 ± 0.5, p = .007). A model containing the single parameter GLevNonU proved to be the best for differentiating between HCM patients and controls with a sensitivity/specificity of 91%/93%. A cut-off of GLevNonU ≥46 allowed for distinguishing HCM patients from controls with a sensitivity/specificity of 94%/90%. Even in patients without late gadolinium enhancement (LGE), the defined cut-off led to a differentiation of LGE- patients from healthy controls with 100% sensitivity and 90% specificity. CONCLUSIONS TA on non-contrast T1-weighted images allows for the detection of myocardial tissue alterations in the setting of HCM with excellent accuracy, delivering potential novel parameters for a non-contrast assessment of myocardial texture alterations.

Abstract

PURPOSE To test in a first proof-of-concept study whether texture analysis (TA) allows for the detection of myocardial tissue alterations in hypertrophic cardiomyopathy (HCM) on non-contrast T1-weighted cardiac magnetic resonance (CMR) images using machine learning based approaches. METHODS This retrospective, IRB-approved study included 32 patients with known HCM. Thirty patients with normal CMR served as controls. Regions-of-interest for TA encompassing the left ventricle were drawn on short-axis non-contrast T1-weighted images using a freely available software package. Step-wise dimension reduction and texture feature selection was performed for selecting features enabling the detection of myocardial tissue alterations in HCM patients on non-contrast T1-weighted CMR images. RESULTS Comparing HCM patients and controls, four texture features were identified showing significant differences between groups (Grey-level Non-uniformity [GLevNonU]: 74 ± 17 vs. 38 ± 9, p < .001; Energy of wavelet coefficients in low-frequency sub-bands [WavEnLL]: 58 ± 5 vs. 48 ± 10, p < .001; Fraction: 0.70 ± 0.07 vs. 0.78 ± 0.05, p < .001; Sum Average: 16.6 ± 0.4 vs. 17.0 ± 0.5, p = .007). A model containing the single parameter GLevNonU proved to be the best for differentiating between HCM patients and controls with a sensitivity/specificity of 91%/93%. A cut-off of GLevNonU ≥46 allowed for distinguishing HCM patients from controls with a sensitivity/specificity of 94%/90%. Even in patients without late gadolinium enhancement (LGE), the defined cut-off led to a differentiation of LGE- patients from healthy controls with 100% sensitivity and 90% specificity. CONCLUSIONS TA on non-contrast T1-weighted images allows for the detection of myocardial tissue alterations in the setting of HCM with excellent accuracy, delivering potential novel parameters for a non-contrast assessment of myocardial texture alterations.

Statistics

Citations

Dimensions.ai Metrics
5 citations in Web of Science®
5 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Diagnostic and Interventional Radiology
04 Faculty of Medicine > University Hospital Zurich > Clinic for Cardiology
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:May 2018
Deposited On:22 May 2018 14:45
Last Modified:14 Apr 2019 05:48
Publisher:Elsevier
ISSN:0720-048X
OA Status:Closed
Publisher DOI:https://doi.org/10.1016/j.ejrad.2018.03.013
PubMed ID:29685546

Download

Full text not available from this repository.
View at publisher

Get full-text in a library