Header

UZH-Logo

Maintenance Infos

Magnetisation transfer as a biomarker for chronic airway fibrosis in a mouse lung transplantation model


Kenkel, David; Yamada, Yoshito; Weiger, Markus; Wurnig, Moritz C; Jungraithmayr, Wolfgang; Boss, Andreas (2018). Magnetisation transfer as a biomarker for chronic airway fibrosis in a mouse lung transplantation model. European radiology experimental, 2(1):3.

Abstract

Background Chronic airway fibrosis (CAF) is the most prevalent complication in human lung transplant recipients. The aim of the study is to evaluate magnetisation transfer (MT) as a biomarker of developing CAF of lung transplants in a mouse model. Methods Lung transplantation was performed in 48 mice, applying major or minor histocompatibility mismatches between strains for the induction of CAF. MT measurements were performed in vivo with systematic variation of off-resonance frequencies and flip angle of the MT prepulse. MT ratios (MTRs) were compared for lungs showing CAF and without CAF. Results Seven out of 24 animals (29%) showed a pattern of CAF at histology. All mice developing CAF also showed signs of acute rejection, whereas none of the lungs showed signs of other post-transplant complications. After lung transplantation, pulmonary infiltration was a frequent finding (14 out of 24) exhibiting a higher MTR (24.8% ± 4.5%) compared to well-ventilated lungs (12.3% ± 6.9%,  = 0.001) at 8000 Hz off-resonance frequency, 3000° flip angle. In infiltrated lung tissue exhibiting CAF, lower MTR values (21.8% ± 5.7%) were found compared to infiltrated lungs showing signs of acute rejection alone (26.5% ± 2.9%,  = 0.028), at 8000 Hz, 3000° flip angle. The highest MTR values were observed at 3000° flip angle, using a 1000 Hz off-resonance frequency. Conclusion MTR might serve as a tool for the detection of CAF in infiltrated lung tissue.

Abstract

Background Chronic airway fibrosis (CAF) is the most prevalent complication in human lung transplant recipients. The aim of the study is to evaluate magnetisation transfer (MT) as a biomarker of developing CAF of lung transplants in a mouse model. Methods Lung transplantation was performed in 48 mice, applying major or minor histocompatibility mismatches between strains for the induction of CAF. MT measurements were performed in vivo with systematic variation of off-resonance frequencies and flip angle of the MT prepulse. MT ratios (MTRs) were compared for lungs showing CAF and without CAF. Results Seven out of 24 animals (29%) showed a pattern of CAF at histology. All mice developing CAF also showed signs of acute rejection, whereas none of the lungs showed signs of other post-transplant complications. After lung transplantation, pulmonary infiltration was a frequent finding (14 out of 24) exhibiting a higher MTR (24.8% ± 4.5%) compared to well-ventilated lungs (12.3% ± 6.9%,  = 0.001) at 8000 Hz off-resonance frequency, 3000° flip angle. In infiltrated lung tissue exhibiting CAF, lower MTR values (21.8% ± 5.7%) were found compared to infiltrated lungs showing signs of acute rejection alone (26.5% ± 2.9%,  = 0.028), at 8000 Hz, 3000° flip angle. The highest MTR values were observed at 3000° flip angle, using a 1000 Hz off-resonance frequency. Conclusion MTR might serve as a tool for the detection of CAF in infiltrated lung tissue.

Statistics

Citations

Altmetrics

Downloads

35 downloads since deposited on 22 May 2018
1 download since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Diagnostic and Interventional Radiology
04 Faculty of Medicine > University Hospital Zurich > Clinic for Thoracic Surgery
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Health Sciences > Radiology, Nuclear Medicine and Imaging
Language:English
Date:2018
Deposited On:22 May 2018 15:09
Last Modified:27 Nov 2023 08:02
Publisher:SpringerOpen
ISSN:2509-9280
OA Status:Gold
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1186/s41747-017-0032-3
PubMed ID:29708209
  • Content: Published Version
  • Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)