Header

UZH-Logo

Maintenance Infos

Decision-making for mitigating wildlife diseases: From theory to practice for an emerging fungal pathogen of amphibians


Canessa, Stefano; Bozzuto, Claudio; Campbell Grant, Evan H; Cruickshank, Sam S; Fisher, Matthew C; Koella, Jacob C; Lötters, Stefan; Martel, An; Pasmans, Frank; Scheele, Ben C; Spitzen-van der Sluijs, Annemarieke; Steinfartz, Sebastian; Schmidt, Benedikt R (2018). Decision-making for mitigating wildlife diseases: From theory to practice for an emerging fungal pathogen of amphibians. Journal of Applied Ecology, 55(4):1987-1996.

Abstract

Conservation science can be most effective in its decision‐support role when seeking answers to clearly formulated questions of direct management relevance. Emerging wildlife diseases, a driver of global biodiversity loss, illustrate the challenges of performing this role: in spite of considerable research, successful disease mitigation is uncommon. Decision analysis is increasingly advocated to guide mitigation planning, but its application remains rare. Using an integral projection model, we explored potential mitigation actions for avoiding population declines and the ongoing spatial spread of the fungus Batrachochytrium salamandrivorans (Bsal). This fungus has recently caused severe amphibian declines in north‐western Europe and currently threatens Palearctic salamander diversity. Available evidence suggests that a Bsal outbreak in a fire salamander (Salamandra salamandra) population will lead to its rapid extirpation. Treatments such as antifungals or probiotics would need to effectively interrupt transmission (reduce probability of infection by nearly 90%) in order to reduce the risk of host extirpation and successfully eradicate the pathogen. Improving the survival of infected hosts is most likely to be detrimental as it increases the potential for pathogen transmission and spread. Active removal of a large proportion of the host population has some potential to locally eradicate Bsal and interrupt its spread, depending on the presence of Bsal reservoirs and on the host's spatial dynamics, which should therefore represent research priorities. Synthesis and applications. Mitigation of Batrachochytrium salamandrivorans epidemics in susceptible host species is highly challenging, requiring effective interruption of transmission and radical removal of host individuals. More generally, our study illustrates the advantages of framing conservation science directly in the management decision context, rather than adapting to it a posteriori.

Abstract

Conservation science can be most effective in its decision‐support role when seeking answers to clearly formulated questions of direct management relevance. Emerging wildlife diseases, a driver of global biodiversity loss, illustrate the challenges of performing this role: in spite of considerable research, successful disease mitigation is uncommon. Decision analysis is increasingly advocated to guide mitigation planning, but its application remains rare. Using an integral projection model, we explored potential mitigation actions for avoiding population declines and the ongoing spatial spread of the fungus Batrachochytrium salamandrivorans (Bsal). This fungus has recently caused severe amphibian declines in north‐western Europe and currently threatens Palearctic salamander diversity. Available evidence suggests that a Bsal outbreak in a fire salamander (Salamandra salamandra) population will lead to its rapid extirpation. Treatments such as antifungals or probiotics would need to effectively interrupt transmission (reduce probability of infection by nearly 90%) in order to reduce the risk of host extirpation and successfully eradicate the pathogen. Improving the survival of infected hosts is most likely to be detrimental as it increases the potential for pathogen transmission and spread. Active removal of a large proportion of the host population has some potential to locally eradicate Bsal and interrupt its spread, depending on the presence of Bsal reservoirs and on the host's spatial dynamics, which should therefore represent research priorities. Synthesis and applications. Mitigation of Batrachochytrium salamandrivorans epidemics in susceptible host species is highly challenging, requiring effective interruption of transmission and radical removal of host individuals. More generally, our study illustrates the advantages of framing conservation science directly in the management decision context, rather than adapting to it a posteriori.

Statistics

Citations

Dimensions.ai Metrics
5 citations in Web of Science®
3 citations in Scopus®
3 citations in Microsoft Academic
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Evolutionary Biology and Environmental Studies
Dewey Decimal Classification:570 Life sciences; biology
590 Animals (Zoology)
Uncontrolled Keywords:amphibian, disease, chytridiomycosis, decision making, mitigation
Language:English
Date:2018
Deposited On:13 Jun 2018 14:10
Last Modified:13 Jun 2018 14:16
Publisher:Wiley-Blackwell Publishing, Inc.
ISSN:0021-8901
OA Status:Closed
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1111/1365-2664.13089

Download

Full text not available from this repository.
View at publisher

Get full-text in a library