Header

UZH-Logo

Maintenance Infos

3D dynamics of debris flows quantified at sub-second intervals from laser profiles


Jacquemart, Mylène; Meier, Lorenz; Graf, Christoph; Morsdorf, Felix (2017). 3D dynamics of debris flows quantified at sub-second intervals from laser profiles. Natural Hazard, 89(2):785-800.

Abstract

We use pairs of parallel mounted laser profile scanners to measure main debris flow variables in two debris-flow channels in central and southern Switzerland. The scanners measure the instantaneous cross-sectional geometry of debris flows at rates of 25–100 Hz, and we apply large-scale particle image velocimetery to estimate velocity. The scanners also provide direct measurements of flow depth. From these data, we were able to estimate debris-flow depth, velocity and discharge for 16 out of 17 events. These results are consistent with discharge estimated from a system of geophones and a radar gauge for two available datasets. We also investigated debris-flow geometry to quantify rheology-controlled cross-flow convexity and found that four events manifest strong surface convexity at their surge fronts where we expect the largest boulders and low pore-fluid pressures. The scanners provide a completely new view of debris-flow dynamics and channel morphology and present novel opportunities to measure discharge and investigate debris-flow geometries.

Abstract

We use pairs of parallel mounted laser profile scanners to measure main debris flow variables in two debris-flow channels in central and southern Switzerland. The scanners measure the instantaneous cross-sectional geometry of debris flows at rates of 25–100 Hz, and we apply large-scale particle image velocimetery to estimate velocity. The scanners also provide direct measurements of flow depth. From these data, we were able to estimate debris-flow depth, velocity and discharge for 16 out of 17 events. These results are consistent with discharge estimated from a system of geophones and a radar gauge for two available datasets. We also investigated debris-flow geometry to quantify rheology-controlled cross-flow convexity and found that four events manifest strong surface convexity at their surge fronts where we expect the largest boulders and low pore-fluid pressures. The scanners provide a completely new view of debris-flow dynamics and channel morphology and present novel opportunities to measure discharge and investigate debris-flow geometries.

Statistics

Citations

Dimensions.ai Metrics
1 citation in Web of Science®
1 citation in Scopus®
1 citation in Microsoft Academic
Google Scholar™

Altmetrics

Downloads

2 downloads since deposited on 26 Jun 2018
2 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Geography
Dewey Decimal Classification:910 Geography & travel
Language:English
Date:2017
Deposited On:26 Jun 2018 13:39
Last Modified:27 Jun 2018 07:50
Publisher:Springer
ISSN:0921-030X
OA Status:Closed
Publisher DOI:https://doi.org/10.1007/s11069-017-2993-1

Download