Header

UZH-Logo

Maintenance Infos

Recursive equilibria in dynamic economies with bounded rationality


Geng, Runjie (2018). Recursive equilibria in dynamic economies with bounded rationality. In: Society for Economic Dynamics (SED), Mexico City, 28 June 2018 - 30 June 2018, 1-25.

Abstract

I provide a new way to model bounded rationality and show the existence of recur-sive equilibria with bounded rational agents. The existence proof applies to dynamic stochastic general equilibrium models with infinitely lived heterogeneous agents and incomplete markets. In this type of models, recursive methods are widely used to compute equilibria, yet recursive equilibria do not exist generically with rational agents. I change the rational expectation assumption and model bounded rationality as fol-lows. Different from a rational agent, a bounded rational agent does not know the true Markov transition of the state space of the economy. In order to make decisions, the bounded rational agent would try to compute a stationary distribution of the state space using a numerical method and then use the Markov transition associated with it to maximize utility. For a certain distribution of the current period, given other agents’ strategies, the agent would get its next-period transition: the distribution of the state space in the next period that results from the competitive equilibrium in the next period. However, if a distribution stays “closer” to its next-period transition than the minimum error the numerical method can observe, the agent would consider it as computational stationary. In equilibrium, each agent maximizes utility with a computational stationary distribution and markets clear. I use the Kantorovich-Rubinshtein norm to characterize the distance between distributions of the state space. With this set up, usual convergence criteria used in the literature can be incorporated and thus many computed equilibria in the literature using recursive methods can be categorized as bounded rational recursive equilibria in the sense of this paper.

Abstract

I provide a new way to model bounded rationality and show the existence of recur-sive equilibria with bounded rational agents. The existence proof applies to dynamic stochastic general equilibrium models with infinitely lived heterogeneous agents and incomplete markets. In this type of models, recursive methods are widely used to compute equilibria, yet recursive equilibria do not exist generically with rational agents. I change the rational expectation assumption and model bounded rationality as fol-lows. Different from a rational agent, a bounded rational agent does not know the true Markov transition of the state space of the economy. In order to make decisions, the bounded rational agent would try to compute a stationary distribution of the state space using a numerical method and then use the Markov transition associated with it to maximize utility. For a certain distribution of the current period, given other agents’ strategies, the agent would get its next-period transition: the distribution of the state space in the next period that results from the competitive equilibrium in the next period. However, if a distribution stays “closer” to its next-period transition than the minimum error the numerical method can observe, the agent would consider it as computational stationary. In equilibrium, each agent maximizes utility with a computational stationary distribution and markets clear. I use the Kantorovich-Rubinshtein norm to characterize the distance between distributions of the state space. With this set up, usual convergence criteria used in the literature can be incorporated and thus many computed equilibria in the literature using recursive methods can be categorized as bounded rational recursive equilibria in the sense of this paper.

Statistics

Downloads

58 downloads since deposited on 28 Jun 2018
27 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Conference or Workshop Item (Paper), refereed, original work
Communities & Collections:03 Faculty of Economics > Department of Banking and Finance
Dewey Decimal Classification:330 Economics
Language:English
Event End Date:30 June 2018
Deposited On:28 Jun 2018 06:21
Last Modified:24 Sep 2019 23:31
Publisher:s.n.
OA Status:Green
Free access at:Official URL. An embargo period may apply.
Official URL:https://sed2018.itam.mx/program
Other Identification Number:merlin-id:16467

Download

Green Open Access

Download PDF  'Recursive equilibria in dynamic economies with bounded rationality'.
Preview
Content: Published Version
Filetype: PDF
Size: 307kB