Header

UZH-Logo

Maintenance Infos

TGF-β Determines the Pro-migratory Potential of bFGF Signaling in Medulloblastoma


Santhana Kumar, Karthiga; Neve, Anuja; Guerreiro Stucklin, Ana S; Kuzan-Fischer, Claudia M; Rushing, Elisabeth J; Taylor, Michael D; Tripolitsioti, Dimitra; Behrmann, Lena; Kirschenbaum, Daniel; Grotzer, Michael A; Baumgartner, Martin (2018). TGF-β Determines the Pro-migratory Potential of bFGF Signaling in Medulloblastoma. Cell Reports, 23(13):3798-3812.e8.

Abstract

The microenvironment shapes cell behavior and determines metastatic outcomes of tumors. We addressed how microenvironmental cues control tumor cell invasion in pediatric medulloblastoma (MB). We show that bFGF promotes MB tumor cell invasion through FGF receptor (FGFR) in vitro and that blockade of FGFR represses brain tissue infiltration in vivo. TGF-β regulates pro-migratory bFGF function in a context-dependent manner. Under low bFGF, the non-canonical TGF-β pathway causes ROCK activation and cortical translocation of ERK1/2, which antagonizes FGFR signaling by inactivating FGFR substrate 2 (FRS2), and promotes a contractile, non-motile phenotype. Under high bFGF, negative-feedback regulation of FRS2 by bFGF-induced ERK1/2 causes repression of the FGFR pathway. Under these conditions, TGF-β counters inactivation of FRS2 and restores pro-migratory signaling. These findings pinpoint coincidence detection of bFGF and TGF-β signaling by FRS2 as a mechanism that controls tumor cell invasion. Thus, targeting FRS2 represents an emerging strategy to abrogate aberrant FGFR signaling.

Abstract

The microenvironment shapes cell behavior and determines metastatic outcomes of tumors. We addressed how microenvironmental cues control tumor cell invasion in pediatric medulloblastoma (MB). We show that bFGF promotes MB tumor cell invasion through FGF receptor (FGFR) in vitro and that blockade of FGFR represses brain tissue infiltration in vivo. TGF-β regulates pro-migratory bFGF function in a context-dependent manner. Under low bFGF, the non-canonical TGF-β pathway causes ROCK activation and cortical translocation of ERK1/2, which antagonizes FGFR signaling by inactivating FGFR substrate 2 (FRS2), and promotes a contractile, non-motile phenotype. Under high bFGF, negative-feedback regulation of FRS2 by bFGF-induced ERK1/2 causes repression of the FGFR pathway. Under these conditions, TGF-β counters inactivation of FRS2 and restores pro-migratory signaling. These findings pinpoint coincidence detection of bFGF and TGF-β signaling by FRS2 as a mechanism that controls tumor cell invasion. Thus, targeting FRS2 represents an emerging strategy to abrogate aberrant FGFR signaling.

Statistics

Citations

Altmetrics

Downloads

24 downloads since deposited on 04 Jul 2018
24 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Children's Hospital Zurich > Medical Clinic
04 Faculty of Medicine > University Hospital Zurich > Institute of Neuropathology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Uncontrolled Keywords:General Biochemistry, Genetics and Molecular Biology
Language:English
Date:26 June 2018
Deposited On:04 Jul 2018 12:44
Last Modified:17 Jan 2019 11:03
Publisher:Cell Press (Elsevier)
ISSN:2211-1247
OA Status:Gold
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1016/j.celrep.2018.05.083
PubMed ID:29949765

Download

Download PDF  'TGF-β Determines the Pro-migratory Potential of bFGF Signaling in Medulloblastoma'.
Preview
Content: Published Version
Filetype: PDF
Size: 8MB
View at publisher
Licence: Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)