Header

UZH-Logo

Maintenance Infos

Haploinsufficiency of the mouse Atp6v1b1 gene leads to a mild acid-base disturbance with implications for kidney stone disease.


Bourgeois, Soline; Bettoni, Carla; Baron, Stéphanie; Wagner, Carsten A (2018). Haploinsufficiency of the mouse Atp6v1b1 gene leads to a mild acid-base disturbance with implications for kidney stone disease. Cellular Physiology and Biochemistry, 47(3):1095-1107.

Abstract

BACKGROUND/AIMS: Homozygous mutations or deletion of the ATP6V1B1 gene encoding for the B1 subunit of the vacuolar H+-ATPase leads to distal renal tubular acidosis in man and mice. In humans, heterozygous carriers of B1 mutations can develop incomplete dRTA with nephroclacinosis. Here, we investigated whether Atp6v1b1+/- mice also develop acid-base disturbances during an HCl acid load.
METHODS: We subjected Atp6v1b1+/+, Atp6v1b1+/-, Atp6v1b1-/- to an HCl-load for 7 days and investigated acid-base status, kidney function, and expression of renal acid-base transport proteins.
RESULTS: Atp6v1b1-/- mice had more alkaline urine and low ammoniuria, whereas Atp6v1b1+/- mice showed no difference in their urine parameters but higher blood chloride and lower blood pCO2 compared to controls. Subcellular localization of a4 and B2 subunits of H+-ATPase were unchanged within the 3 genotypes and Atp6v1b1+/+ and Atp6v1b1+/- mice exhibited a similar luminal localization of B1 subunit in intercalated cells. However, B1, B2 and a4 expression were decreased in renal membrane fractions from Atp6v1b1+/- mice compared to Atp6v1b1+/+ while B2 and a4 were unchanged and B1 protein was reduced in Atp6v1b+-/- kidneys. Compensatory mechanisms of B1 ablation were found only in the collecting duct with a down-regulation of pendrin in Atp6v1b1-/- mice.
CONCLUSIONS: In conclusion, 1) Atp6v1b1+/- mice developed a mild incomplete dRTA. dRTA is partly compensated by respiration. 2) Compensatory mechanisms for the absence of B1 take place only in the collecting duct of Atp6v1b1-/- kidneys.

Abstract

BACKGROUND/AIMS: Homozygous mutations or deletion of the ATP6V1B1 gene encoding for the B1 subunit of the vacuolar H+-ATPase leads to distal renal tubular acidosis in man and mice. In humans, heterozygous carriers of B1 mutations can develop incomplete dRTA with nephroclacinosis. Here, we investigated whether Atp6v1b1+/- mice also develop acid-base disturbances during an HCl acid load.
METHODS: We subjected Atp6v1b1+/+, Atp6v1b1+/-, Atp6v1b1-/- to an HCl-load for 7 days and investigated acid-base status, kidney function, and expression of renal acid-base transport proteins.
RESULTS: Atp6v1b1-/- mice had more alkaline urine and low ammoniuria, whereas Atp6v1b1+/- mice showed no difference in their urine parameters but higher blood chloride and lower blood pCO2 compared to controls. Subcellular localization of a4 and B2 subunits of H+-ATPase were unchanged within the 3 genotypes and Atp6v1b1+/+ and Atp6v1b1+/- mice exhibited a similar luminal localization of B1 subunit in intercalated cells. However, B1, B2 and a4 expression were decreased in renal membrane fractions from Atp6v1b1+/- mice compared to Atp6v1b1+/+ while B2 and a4 were unchanged and B1 protein was reduced in Atp6v1b+-/- kidneys. Compensatory mechanisms of B1 ablation were found only in the collecting duct with a down-regulation of pendrin in Atp6v1b1-/- mice.
CONCLUSIONS: In conclusion, 1) Atp6v1b1+/- mice developed a mild incomplete dRTA. dRTA is partly compensated by respiration. 2) Compensatory mechanisms for the absence of B1 take place only in the collecting duct of Atp6v1b1-/- kidneys.

Statistics

Citations

Altmetrics

Downloads

6 downloads since deposited on 02 Aug 2018
6 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Physiology
07 Faculty of Science > Institute of Physiology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Uncontrolled Keywords:Physiology
Language:English
Date:25 May 2018
Deposited On:02 Aug 2018 15:42
Last Modified:19 Aug 2018 16:11
Publisher:Karger
ISSN:1015-8987
OA Status:Gold
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1159/000490186
PubMed ID:29843146

Download

Download PDF  'Haploinsufficiency of the mouse Atp6v1b1 gene leads to a mild acid-base disturbance with implications for kidney stone disease.'.
Preview
Content: Published Version
Language: English
Filetype: PDF
Size: 1MB
View at publisher
Licence: Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)