Header

UZH-Logo

Maintenance Infos

Considering our methods: Methodological issues with rodent models of appetite and obesity research


Lutz, Thomas A (2018). Considering our methods: Methodological issues with rodent models of appetite and obesity research. Physiology and Behavior, 192:182-187.

Abstract

A large number of animal models are currently used in appetite and obesity research. Because the worldwide incidence of obesity continues to climb, it is imperative that animal models sharing characteristics of human obesity and its co-morbidities be used appropriately in the quest for novel preventions or treatments. There is probably no animal model, at least in rodents, that recapitulates all aspects of "common" human obesity and its comorbidities, but rodent models allow insight into specific mechanisms of disease or its consequences. Frequently used obesity models can be partitioned into different categories, the major ones being a) based on mutations or manipulations of one or a few individual genes or b) those in genetically intact animals exposed to obesogenic environments such as, e.g., being maintained on high-fat diets or being raised in small litters. Characteristics of these models include distinct phenotypes of obesity, hyperphagia or changes in energy metabolism, and frequent comorbidities of obesity, like hyperglycemia, insulin resistance or diabetes-like syndromes. This review which is based on a presentation given during the Annual Meeting of the Society for the Study of Ingestive Behavior in July 2017 points out some observations and characteristics of rodent models in obesity and diabetes research. The choice of rodent models discussed here is subjective and based on the author's own experience or on fruitful discussions with colleagues about the pros and cons of specific models. Hence, this review, by no means, is meant to give a complete picture of rodent models used in this type of research, but the review tries to bring up some issues which, in the author's mind, may also be relevant for models not discussed here. For example, by discussing specific mouse and rat models, similarities and differences between mice and rats will be discussed that need to be considered to interpret experimental findings cautiously and in the context of the respective animal model. Knowing which animal model to use means, knowing its limitations.

Abstract

A large number of animal models are currently used in appetite and obesity research. Because the worldwide incidence of obesity continues to climb, it is imperative that animal models sharing characteristics of human obesity and its co-morbidities be used appropriately in the quest for novel preventions or treatments. There is probably no animal model, at least in rodents, that recapitulates all aspects of "common" human obesity and its comorbidities, but rodent models allow insight into specific mechanisms of disease or its consequences. Frequently used obesity models can be partitioned into different categories, the major ones being a) based on mutations or manipulations of one or a few individual genes or b) those in genetically intact animals exposed to obesogenic environments such as, e.g., being maintained on high-fat diets or being raised in small litters. Characteristics of these models include distinct phenotypes of obesity, hyperphagia or changes in energy metabolism, and frequent comorbidities of obesity, like hyperglycemia, insulin resistance or diabetes-like syndromes. This review which is based on a presentation given during the Annual Meeting of the Society for the Study of Ingestive Behavior in July 2017 points out some observations and characteristics of rodent models in obesity and diabetes research. The choice of rodent models discussed here is subjective and based on the author's own experience or on fruitful discussions with colleagues about the pros and cons of specific models. Hence, this review, by no means, is meant to give a complete picture of rodent models used in this type of research, but the review tries to bring up some issues which, in the author's mind, may also be relevant for models not discussed here. For example, by discussing specific mouse and rat models, similarities and differences between mice and rats will be discussed that need to be considered to interpret experimental findings cautiously and in the context of the respective animal model. Knowing which animal model to use means, knowing its limitations.

Statistics

Citations

Dimensions.ai Metrics
4 citations in Web of Science®
4 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

2 downloads since deposited on 21 Aug 2018
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:05 Vetsuisse Faculty > Institute of Veterinary Physiology
Dewey Decimal Classification:570 Life sciences; biology
Scopus Subject Areas:Social Sciences & Humanities > Experimental and Cognitive Psychology
Life Sciences > Behavioral Neuroscience
Uncontrolled Keywords:Experimental and Cognitive Psychology, Behavioral Neuroscience, Amylin; BAT; CCK; DIO/DR; Diabetes; Islet amyloid; NPY; RYGB
Language:English
Date:1 August 2018
Deposited On:21 Aug 2018 17:31
Last Modified:29 Jul 2020 07:32
Publisher:Elsevier
ISSN:0031-9384
OA Status:Closed
Publisher DOI:https://doi.org/10.1016/j.physbeh.2018.02.026
PubMed ID:29454067

Download

Closed Access: Download allowed only for UZH members