Header

UZH-Logo

Maintenance Infos

Squeezing for life - properties of red blood cell deformability


Huisjes, Rick; Bogdanova, Anna; van Solinge, Wouter W; Schiffelers, Raymond M; Kaestner, Lars; van Wijk, Richard (2018). Squeezing for life - properties of red blood cell deformability. Frontiers in Physiology, 9:656.

Abstract

Deformability is an essential feature of blood cells (RBCs) that enables them to travel through even the smallest capillaries of the human body. Deformability is a function of (i) structural elements of cytoskeletal proteins, (ii) processes controlling intracellular ion and water handling and (iii) membrane surface-to-volume ratio. All these factors may be altered in various forms of hereditary hemolytic anemia, such as sickle cell disease, thalassemia, hereditary spherocytosis and hereditary xerocytosis. Although mutations are known as the primary causes of these congenital anemias, little is known about the resulting secondary processes that affect RBC deformability (such as secondary changes in RBC hydration, membrane protein phosphorylation, and RBC vesiculation). These secondary processes could, however, play an important role in the premature removal of the aberrant RBCs by the spleen. Altered RBC deformability could contribute to disease pathophysiology in various disorders of the RBC. Here we review the current knowledge on RBC deformability in different forms of hereditary hemolytic anemia and describe secondary mechanisms involved in RBC deformability.

Abstract

Deformability is an essential feature of blood cells (RBCs) that enables them to travel through even the smallest capillaries of the human body. Deformability is a function of (i) structural elements of cytoskeletal proteins, (ii) processes controlling intracellular ion and water handling and (iii) membrane surface-to-volume ratio. All these factors may be altered in various forms of hereditary hemolytic anemia, such as sickle cell disease, thalassemia, hereditary spherocytosis and hereditary xerocytosis. Although mutations are known as the primary causes of these congenital anemias, little is known about the resulting secondary processes that affect RBC deformability (such as secondary changes in RBC hydration, membrane protein phosphorylation, and RBC vesiculation). These secondary processes could, however, play an important role in the premature removal of the aberrant RBCs by the spleen. Altered RBC deformability could contribute to disease pathophysiology in various disorders of the RBC. Here we review the current knowledge on RBC deformability in different forms of hereditary hemolytic anemia and describe secondary mechanisms involved in RBC deformability.

Statistics

Citations

Dimensions.ai Metrics
6 citations in Web of Science®
5 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

12 downloads since deposited on 21 Aug 2018
12 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Center for Integrative Human Physiology
05 Vetsuisse Faculty > Institute of Veterinary Physiology
Dewey Decimal Classification:570 Life sciences; biology
Uncontrolled Keywords:deformability; enzymopathies; hemolysis; hereditary spherocytosis; hydration; sickle cell anemia; thalassemia; vesiculation
Language:English
Date:2018
Deposited On:21 Aug 2018 17:52
Last Modified:31 Aug 2018 23:51
Publisher:Frontiers Research Foundation
ISSN:1664-042X
OA Status:Gold
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.3389/fphys.2018.00656
PubMed ID:29910743

Download

Download PDF  'Squeezing for life - properties of red blood cell deformability'.
Preview
Content: Published Version
Language: English
Filetype: PDF
Size: 3MB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)