Header

UZH-Logo

Maintenance Infos

A simple model for molecular hydrogen chemistry coupled to radiation hydrodynamics


Nickerson, Sarah; Teyssier, Romain; Rosdahl, Joakim (2018). A simple model for molecular hydrogen chemistry coupled to radiation hydrodynamics. Monthly Notices of the Royal Astronomical Society, 479(3):3206-3226.

Abstract

We introduce non-equilibrium molecular hydrogen chemistry into the radiation hydrodynamics code Ramses-RT. This is an adaptive mesh refinement grid code with radiation hydrodynamics that couples the thermal chemistry of hydrogen and helium to moment-based radiative transfer with the Eddington tensor closure model. The H2 physics that we include are formation on dust grains, gas phase formation, formation by three-body collisions, collisional destruction, photodissociation, photoionization, cosmic ray ionization, and self-shielding. In particular, we implement the first model for H2 self-shielding that is tied locally to moment-based radiative transfer by enhancing photodestruction. This self-shielding from Lyman–Werner line overlap is critical to H2 formation and gas cooling. We can now track the non-equilibrium evolution of molecular, atomic, and ionized hydrogen species with their corresponding dissociating and ionizing photon groups. Over a series of tests we show that our model works well compared to specialized photodissociation region codes. We successfully reproduce the transition depth between molecular and atomic hydrogen, molecular cooling of the gas, and a realistic Strömgren sphere embedded in a molecular medium. In this paper we focus on test cases to demonstrate the validity of our model on small scales. Our ultimate goal is to implement this in large-scale galactic simulations.

Abstract

We introduce non-equilibrium molecular hydrogen chemistry into the radiation hydrodynamics code Ramses-RT. This is an adaptive mesh refinement grid code with radiation hydrodynamics that couples the thermal chemistry of hydrogen and helium to moment-based radiative transfer with the Eddington tensor closure model. The H2 physics that we include are formation on dust grains, gas phase formation, formation by three-body collisions, collisional destruction, photodissociation, photoionization, cosmic ray ionization, and self-shielding. In particular, we implement the first model for H2 self-shielding that is tied locally to moment-based radiative transfer by enhancing photodestruction. This self-shielding from Lyman–Werner line overlap is critical to H2 formation and gas cooling. We can now track the non-equilibrium evolution of molecular, atomic, and ionized hydrogen species with their corresponding dissociating and ionizing photon groups. Over a series of tests we show that our model works well compared to specialized photodissociation region codes. We successfully reproduce the transition depth between molecular and atomic hydrogen, molecular cooling of the gas, and a realistic Strömgren sphere embedded in a molecular medium. In this paper we focus on test cases to demonstrate the validity of our model on small scales. Our ultimate goal is to implement this in large-scale galactic simulations.

Statistics

Citations

Dimensions.ai Metrics
3 citations in Web of Science®
1 citation in Scopus®
Google Scholar™

Altmetrics

Downloads

8 downloads since deposited on 01 Mar 2019
8 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute for Computational Science
Dewey Decimal Classification:530 Physics
Uncontrolled Keywords:Space and Planetary Science, Astronomy and Astrophysics
Language:English
Date:2018
Deposited On:01 Mar 2019 14:06
Last Modified:17 Sep 2019 19:25
Publisher:Oxford University Press
ISSN:0035-8711
OA Status:Green
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1093/mnras/sty1556

Download

Download PDF  'A simple model for molecular hydrogen chemistry coupled to radiation hydrodynamics'.
Preview
Content: Published Version
Filetype: PDF
Size: 5MB
View at publisher