Header

UZH-Logo

Maintenance Infos

Free-floating molecular clumps and gas mixing: hydrodynamic aftermaths of the intracluster–interstellar medium interaction


Ruggiero, Rafael; Teyssier, Romain; Lima Neto, Gastao B; Perret, Valentin (2018). Free-floating molecular clumps and gas mixing: hydrodynamic aftermaths of the intracluster–interstellar medium interaction. Monthly Notices of the Royal Astronomical Society, 480(2):2191-2199.

Abstract

The interaction of gas-rich galaxies with the intracluster medium (ICM) of galaxy clusters has a remarkable impact on their evolution, mainly due to the gas loss associated with this process. In this work, we use an idealized, high-resolution simulation of a Virgo-like cluster, run with ramses and with dynamics reproducing that of a zoom cosmological simulation, to investigate the interaction of infalling galaxies with the ICM. We find that the tails of ram pressure stripped galaxies give rise to a population of up to more than a hundred clumps of molecular gas lurking in the cluster. The number count of those clumps varies a lot overtime – they are preferably generated when a large galaxy crosses the cluster (M200c > 1012 M⊙), and their lifetime (≲ 300 Myr) is small compared to the age of the cluster. We compute the intracluster luminosity associated with the star formation that takes place within those clumps, finding that the stars formed in all of the galaxy tails combined amount to an irrelevant contribution to the intracluster light. Surprisingly, we also find in our simulation that the ICM gas significantly changes the composition of the gaseous discs of the galaxies: after crossing the cluster once, typically 20 per cent of the cold gas still in those discs comes from the ICM.

Abstract

The interaction of gas-rich galaxies with the intracluster medium (ICM) of galaxy clusters has a remarkable impact on their evolution, mainly due to the gas loss associated with this process. In this work, we use an idealized, high-resolution simulation of a Virgo-like cluster, run with ramses and with dynamics reproducing that of a zoom cosmological simulation, to investigate the interaction of infalling galaxies with the ICM. We find that the tails of ram pressure stripped galaxies give rise to a population of up to more than a hundred clumps of molecular gas lurking in the cluster. The number count of those clumps varies a lot overtime – they are preferably generated when a large galaxy crosses the cluster (M200c > 1012 M⊙), and their lifetime (≲ 300 Myr) is small compared to the age of the cluster. We compute the intracluster luminosity associated with the star formation that takes place within those clumps, finding that the stars formed in all of the galaxy tails combined amount to an irrelevant contribution to the intracluster light. Surprisingly, we also find in our simulation that the ICM gas significantly changes the composition of the gaseous discs of the galaxies: after crossing the cluster once, typically 20 per cent of the cold gas still in those discs comes from the ICM.

Statistics

Citations

Altmetrics

Downloads

2 downloads since deposited on 01 Mar 2019
2 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute for Computational Science
Dewey Decimal Classification:530 Physics
Uncontrolled Keywords:Space and Planetary Science, Astronomy and Astrophysics
Language:English
Date:2018
Deposited On:01 Mar 2019 14:26
Last Modified:17 Sep 2019 19:25
Publisher:Oxford University Press
ISSN:0035-8711
OA Status:Green
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1093/mnras/sty2010

Download

Download PDF  'Free-floating molecular clumps and gas mixing: hydrodynamic aftermaths of the intracluster–interstellar medium interaction'.
Preview
Content: Published Version
Filetype: PDF
Size: 1MB
View at publisher