Header

UZH-Logo

Maintenance Infos

A novel ultra-light suction device for mechanical characterization of skin


Müller, Bettina; Elrod, Julia; Pensalfini, Marco; Hopf, Raoul; Distler, Oliver; Schiestl, Clemens; Mazza, Edoardo (2018). A novel ultra-light suction device for mechanical characterization of skin. PLoS ONE, 13(8):e0201440.

Abstract

Suction experiments have been extensively applied for skin characterization. In these tests the deformation behavior of superficial tissue layers determines the elevation of the skin surface observed when a predefined negative (suction) pressure history is applied. The ability of such measurements to differentiate between skin conditions is limited by the variability of the elevation response observed in repeated experiments. The scatter was shown to be associated with the force exerted by the observer when holding the instrument against the skin. We have developed a novel suction device and a measurement procedure aiming at a tighter control of mechanical boundary conditions during the experiments. The new device weighs only 3.5 g and thus allows to minimize the force applied on the skin during the test. In this way, it is possible to reliably characterize the mechanical response of skin, also in case of low values of suction pressure and deformation. The influence of the contact force is analyzed through experiments on skin and synthetic materials, and rationalized based on corresponding finite element calculations. A comparative study, involving measurements on four body locations in two subjects by three observers, showed the good performance of the new procedure, specific advantages, and limitations with respect to the Cutometer®, i.e. the suction device most widely applied for skin characterization. As a byproduct of the present investigation, a correction procedure is proposed for the Cutometer measurements, which allows to partially compensate for the influence of the contact force. The characteristics of the new suction method are discussed in view of future applications for diagnostic purposes.

Abstract

Suction experiments have been extensively applied for skin characterization. In these tests the deformation behavior of superficial tissue layers determines the elevation of the skin surface observed when a predefined negative (suction) pressure history is applied. The ability of such measurements to differentiate between skin conditions is limited by the variability of the elevation response observed in repeated experiments. The scatter was shown to be associated with the force exerted by the observer when holding the instrument against the skin. We have developed a novel suction device and a measurement procedure aiming at a tighter control of mechanical boundary conditions during the experiments. The new device weighs only 3.5 g and thus allows to minimize the force applied on the skin during the test. In this way, it is possible to reliably characterize the mechanical response of skin, also in case of low values of suction pressure and deformation. The influence of the contact force is analyzed through experiments on skin and synthetic materials, and rationalized based on corresponding finite element calculations. A comparative study, involving measurements on four body locations in two subjects by three observers, showed the good performance of the new procedure, specific advantages, and limitations with respect to the Cutometer®, i.e. the suction device most widely applied for skin characterization. As a byproduct of the present investigation, a correction procedure is proposed for the Cutometer measurements, which allows to partially compensate for the influence of the contact force. The characteristics of the new suction method are discussed in view of future applications for diagnostic purposes.

Statistics

Citations

Dimensions.ai Metrics
21 citations in Web of Science®
26 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

54 downloads since deposited on 24 Aug 2018
6 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Rheumatology Clinic and Institute of Physical Medicine
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Life Sciences > General Biochemistry, Genetics and Molecular Biology
Life Sciences > General Agricultural and Biological Sciences
Health Sciences > Multidisciplinary
Language:English
Date:2018
Deposited On:24 Aug 2018 09:26
Last Modified:27 Nov 2023 08:12
Publisher:Public Library of Science (PLoS)
ISSN:1932-6203
OA Status:Gold
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1371/journal.pone.0201440
PubMed ID:30089132
  • Content: Published Version
  • Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)