Header

UZH-Logo

Maintenance Infos

Identification of novel diabetes impaired miRNA-transcription factor co-regulatory networks in bone marrow-derived Lin-/VEGF-R2+ endothelial progenitor cells


Irhimeh, Mohammad R; Hamed, Mohamed; Barthelmes, Daniel; Gladbach, Yvonne; Helms, Volkhard; Shen, Weiyong; Gillies, Mark C (2018). Identification of novel diabetes impaired miRNA-transcription factor co-regulatory networks in bone marrow-derived Lin-/VEGF-R2+ endothelial progenitor cells. PLoS ONE, 13(7):e0200194.

Abstract

Endothelial progenitor cells (EPCs) are a group of rare cells that play an important role in the repair of injured vascular endothelial cells and assist in reperfusion of ischemic tissue. Decreased production and/or loss of function of EPCs are associated with diabetic vasculopathy. The molecular mechanisms by which diabetes impairs EPCs remain unclear. We conducted microarray experiments followed by integrative regulatory analysis on cells isolated from Akita diabetic mice (18-weeks after onset of diabetes) and age-matched non-diabetic controls. Two types of cells were isolated from mice bone marrow; Lin+ cells and Lin-/VEGF-R2+ EPCs. RNA was hybridized to mouse WG-6 V2 beadchips followed by comprehensive gene network analysis and computational validation of the obtained results. In total, 80 genes were exclusively DE between non-diabetic Lin-/VEGF-R2+ EPCs and diabetic Lin-/VEGF-R2+ EPCs, of which the 3 genes Clcnka, Pik3c2a, and Ptf1a are known to be associated with diabetic complications. Further analysis led to the establishment of a TF-miRNA mediated regulatory network specific to diabetic Lin-/VEGF-R2+ EPCs and to identify 11 central-hub TFs (Tbp, Ahr, Trp53, Gata1, Foxo1, Foxo4, Yy1, Max, Pparg, Myc, Cebpa), and 2 miRNAs (mir-139-5p, mir-709) that might act as putative genomic drivers of diabetic pathogenesis in Lin-/VEGF-R2+ EPCs. Moreover, we identified multiple TF-miRNA co-regulatory network motifs for which we validated their contribution to diabetic Lin-/VEGF-R2+ EPCs in terms of statistical significance and relevance to biological evidence. Our findings suggest that diabetic Lin-/VEGF-R2+ EPCs have specifically altered signature genes and miRNAs that render their capacity to proliferate and differentiate.

Abstract

Endothelial progenitor cells (EPCs) are a group of rare cells that play an important role in the repair of injured vascular endothelial cells and assist in reperfusion of ischemic tissue. Decreased production and/or loss of function of EPCs are associated with diabetic vasculopathy. The molecular mechanisms by which diabetes impairs EPCs remain unclear. We conducted microarray experiments followed by integrative regulatory analysis on cells isolated from Akita diabetic mice (18-weeks after onset of diabetes) and age-matched non-diabetic controls. Two types of cells were isolated from mice bone marrow; Lin+ cells and Lin-/VEGF-R2+ EPCs. RNA was hybridized to mouse WG-6 V2 beadchips followed by comprehensive gene network analysis and computational validation of the obtained results. In total, 80 genes were exclusively DE between non-diabetic Lin-/VEGF-R2+ EPCs and diabetic Lin-/VEGF-R2+ EPCs, of which the 3 genes Clcnka, Pik3c2a, and Ptf1a are known to be associated with diabetic complications. Further analysis led to the establishment of a TF-miRNA mediated regulatory network specific to diabetic Lin-/VEGF-R2+ EPCs and to identify 11 central-hub TFs (Tbp, Ahr, Trp53, Gata1, Foxo1, Foxo4, Yy1, Max, Pparg, Myc, Cebpa), and 2 miRNAs (mir-139-5p, mir-709) that might act as putative genomic drivers of diabetic pathogenesis in Lin-/VEGF-R2+ EPCs. Moreover, we identified multiple TF-miRNA co-regulatory network motifs for which we validated their contribution to diabetic Lin-/VEGF-R2+ EPCs in terms of statistical significance and relevance to biological evidence. Our findings suggest that diabetic Lin-/VEGF-R2+ EPCs have specifically altered signature genes and miRNAs that render their capacity to proliferate and differentiate.

Statistics

Citations

Dimensions.ai Metrics
7 citations in Web of Science®
7 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

73 downloads since deposited on 29 Aug 2018
9 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Ophthalmology Clinic
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Life Sciences > General Biochemistry, Genetics and Molecular Biology
Life Sciences > General Agricultural and Biological Sciences
Health Sciences > Multidisciplinary
Language:English
Date:2018
Deposited On:29 Aug 2018 12:28
Last Modified:27 Nov 2023 08:13
Publisher:Public Library of Science (PLoS)
ISSN:1932-6203
OA Status:Gold
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1371/journal.pone.0200194
PubMed ID:29995913
  • Content: Published Version
  • Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)