Header

UZH-Logo

Maintenance Infos

Mechanisms and Regulation of Intestinal Phosphate Absorption


Hernando, Nati; Wagner, Carsten A (2018). Mechanisms and Regulation of Intestinal Phosphate Absorption. Comprehensive Physiology, 8(3):1065-1090.

Abstract

States of hypo- and hyperphosphatemia have deleterious consequences including rickets/osteomalacia and renal/cardiovascular disease, respectively. Therefore, the maintenance of appropriate plasma levels of phosphate is an essential requirement for health. This control is executed by the collaborative action of intestine and kidney whose capacities to (re)absorb phosphate are regulated by a number of hormonal and metabolic factors, among them parathyroid hormone, fibroblast growth factor 23, 1,25(OH) vitamin D , and dietary phosphate. The molecular mechanisms responsible for the transepithelial transport of phosphate across enterocytes are only partially understood. Indeed, whereas renal reabsorption entirely relies on well-characterized active transport mechanisms of phosphate across the renal proximal epithelia, intestinal absorption proceeds via active and passive mechanisms, with the molecular identity of the passive component still unknown. The active absorption of phosphate depends mostly on the activity and expression of the sodium-dependent phosphate cotransporter NaPi-IIb (SLC34A2), which is highly regulated by many of the factors, mentioned earlier. Physiologically, the contribution of NaPi-IIb to the maintenance of phosphate balance appears to be mostly relevant during periods of low phosphate availability. Therefore, its role in individuals living in industrialized societies with high phosphate intake is probably less relevant. Importantly, small increases in plasma phosphate, even within normal range, associate with higher risk of cardiovascular disease. Therefore, therapeutic approaches to treat hyperphosphatemia, including dietary phosphate restriction and phosphate binders, aim at reducing intestinal absorption. Here we review the current state of research in the field. © 2017 American Physiological Society. Compr Physiol 8:1065-1090, 2018.

Abstract

States of hypo- and hyperphosphatemia have deleterious consequences including rickets/osteomalacia and renal/cardiovascular disease, respectively. Therefore, the maintenance of appropriate plasma levels of phosphate is an essential requirement for health. This control is executed by the collaborative action of intestine and kidney whose capacities to (re)absorb phosphate are regulated by a number of hormonal and metabolic factors, among them parathyroid hormone, fibroblast growth factor 23, 1,25(OH) vitamin D , and dietary phosphate. The molecular mechanisms responsible for the transepithelial transport of phosphate across enterocytes are only partially understood. Indeed, whereas renal reabsorption entirely relies on well-characterized active transport mechanisms of phosphate across the renal proximal epithelia, intestinal absorption proceeds via active and passive mechanisms, with the molecular identity of the passive component still unknown. The active absorption of phosphate depends mostly on the activity and expression of the sodium-dependent phosphate cotransporter NaPi-IIb (SLC34A2), which is highly regulated by many of the factors, mentioned earlier. Physiologically, the contribution of NaPi-IIb to the maintenance of phosphate balance appears to be mostly relevant during periods of low phosphate availability. Therefore, its role in individuals living in industrialized societies with high phosphate intake is probably less relevant. Importantly, small increases in plasma phosphate, even within normal range, associate with higher risk of cardiovascular disease. Therefore, therapeutic approaches to treat hyperphosphatemia, including dietary phosphate restriction and phosphate binders, aim at reducing intestinal absorption. Here we review the current state of research in the field. © 2017 American Physiological Society. Compr Physiol 8:1065-1090, 2018.

Statistics

Citations

Dimensions.ai Metrics
41 citations in Web of Science®
47 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, further contribution
Communities & Collections:04 Faculty of Medicine > Institute of Physiology
07 Faculty of Science > Institute of Physiology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Scopus Subject Areas:Life Sciences > Physiology
Health Sciences > Physiology (medical)
Language:English
Date:18 June 2018
Deposited On:11 Sep 2018 14:44
Last Modified:27 Nov 2023 08:13
Publisher:Wiley-Blackwell Publishing, Inc.
ISSN:2040-4603
OA Status:Closed
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1002/cphy.c170024
PubMed ID:29978897
Full text not available from this repository.