Header

UZH-Logo

Maintenance Infos

Single-cell RNA sequencing of mouse brain and lung vascular and vessel-associated cell types


Abstract

Vascular diseases are major causes of death, yet our understanding of the cellular constituents of blood vessels, including how differences in their gene expression profiles create diversity in vascular structure and function, is limited. In this paper, we describe a single-cell RNA sequencing (scRNA-seq) dataset that defines vascular and vessel-associated cell types and subtypes in mouse brain and lung. The dataset contains 3,436 single cell transcriptomes from mouse brain, which formed 15 distinct clusters corresponding to cell (sub)types, and another 1,504 single cell transcriptomes from mouse lung, which formed 17 cell clusters. In order to allow user-friendly access to our data, we constructed a searchable database (http://betsholtzlab.org/VascularSingleCells/database.html). Our dataset constitutes a comprehensive molecular atlas of vascular and vessel-associated cell types in the mouse brain and lung, and as such provides a strong foundation for future studies of vascular development and diseases.

Abstract

Vascular diseases are major causes of death, yet our understanding of the cellular constituents of blood vessels, including how differences in their gene expression profiles create diversity in vascular structure and function, is limited. In this paper, we describe a single-cell RNA sequencing (scRNA-seq) dataset that defines vascular and vessel-associated cell types and subtypes in mouse brain and lung. The dataset contains 3,436 single cell transcriptomes from mouse brain, which formed 15 distinct clusters corresponding to cell (sub)types, and another 1,504 single cell transcriptomes from mouse lung, which formed 17 cell clusters. In order to allow user-friendly access to our data, we constructed a searchable database (http://betsholtzlab.org/VascularSingleCells/database.html). Our dataset constitutes a comprehensive molecular atlas of vascular and vessel-associated cell types in the mouse brain and lung, and as such provides a strong foundation for future studies of vascular development and diseases.

Statistics

Citations

Dimensions.ai Metrics
213 citations in Web of Science®
218 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

117 downloads since deposited on 12 Sep 2018
5 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Neurosurgery
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Physical Sciences > Statistics and Probability
Physical Sciences > Information Systems
Social Sciences & Humanities > Education
Physical Sciences > Computer Science Applications
Social Sciences & Humanities > Statistics, Probability and Uncertainty
Social Sciences & Humanities > Library and Information Sciences
Language:English
Date:2018
Deposited On:12 Sep 2018 14:57
Last Modified:26 Jan 2022 17:25
Publisher:Nature Publishing Group
ISSN:2052-4463
OA Status:Gold
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1038/sdata.2018.160
PubMed ID:30129931
  • Content: Published Version
  • Language: English
  • Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)