Navigation auf zora.uzh.ch

Search ZORA

ZORA (Zurich Open Repository and Archive)

Safety, Feasibility, and Efficiency of a New Cooling Device Using Intravenous Cold Infusions for Fever Control

Willms, J F; Boss, O; Keller, E (2019). Safety, Feasibility, and Efficiency of a New Cooling Device Using Intravenous Cold Infusions for Fever Control. Neurocritical Care, 30(1):149-156.

Abstract

BACKGROUND
Fever control plays a key role in therapy of patients with acute brain injury. The infusion of cold saline could serve as an alternative or additional method for targeted temperature management. However, it is difficult to estimate the amount of fluid required to achieve normothermia merely on the basis of body weight. There is no standardized load management regarding the administration of cold saline, and no closed-loop systems based on continuous temperature-controlled feedback are available. The primary purpose of the present study was to evaluate the feasibility, efficacy, and safety of a new automated fluid infusion system.
METHODS
Twelve patients with acute brain injury and febrile episodes were treated with the automated infusion device tempedy (seiratherm GmbH, Herzogenaurach, Germany). Patients were included if bladder temperature still was ≥ 37.9 °C after administration of antipyretic medication, cold washing solutions, and ice packs more than 2 h earlier. The efficacy was examined by measuring the time and amount of fluid needed to reach and maintain target temperature. Feasibility and safety were assessed based on recording any technical difficulties with the new device and the occurrence of clinical signs of fluid overload such as acute pulmonary edema, electrolyte disturbances, or acid-base dysfunction.
RESULTS
The mean time was 73 min (range from 15 to 330 min) and 1650 ml the mean amount of fluid (21.2 ml/kg; SD 28.5 ml/kg) to reach the target temperature. The mean total fluid balance to reach and maintain the target temperature in the first 12 h was 1350 ml (SD 1550 ml). In the first 12 h 89.4% of the time temperature values were in the target range (median 95.3%, range 83.8-10%). No clinical signs of fluid overload such as an acute pulmonary edema or device-related adverse events occurred.
CONCLUSION
Target temperature management with the new automated infusion device is feasible. Although we provided first data regarding safety, further controlled randomized studies are needed to evaluate the long-time safety, as well as the best indications and timing for this cooling device.

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Institute of Intensive Care Medicine
04 Faculty of Medicine > University Hospital Zurich > Clinic for Neurosurgery
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Health Sciences > Neurology (clinical)
Health Sciences > Critical Care and Intensive Care Medicine
Uncontrolled Keywords:Brain injury, Fever, Cold saline, Cold infusion, Targeted temperature management
Language:English
Date:1 February 2019
Deposited On:12 Sep 2018 15:00
Last Modified:19 Dec 2024 02:35
Publisher:Springer
ISSN:1541-6933
OA Status:Closed
Publisher DOI:https://doi.org/10.1007/s12028-018-0588-7
Related URLs:https://www.zora.uzh.ch/id/eprint/178380/
PubMed ID:30097980

Metadata Export

Statistics

Citations

Dimensions.ai Metrics
3 citations in Web of Science®
4 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 12 Sep 2018
0 downloads since 12 months
Detailed statistics

Authors, Affiliations, Collaborations

Similar Publications