Header

UZH-Logo

Maintenance Infos

Incorporating BMP-2 and skeletal muscle to a semitendinosus autograft in an oversized tunnel yields robust bone tunnel ossification in rabbits: Toward single-step revision of failed anterior cruciate ligament reconstruction


Germann, Marco; Snedeker, Jess G; Stalder, Michael; Nuss, Katja M; Meyer, Dominik C; Farshad, Mazda (2018). Incorporating BMP-2 and skeletal muscle to a semitendinosus autograft in an oversized tunnel yields robust bone tunnel ossification in rabbits: Toward single-step revision of failed anterior cruciate ligament reconstruction. The Knee, 25(5):765-773.

Abstract

BACKGROUND Bone tunnel widening after anterior cruciate ligament (ACL) reconstruction is a known complication that can lead to graft failure. Subsequent revision surgery typically involves a two-stage procedure. The aim of this study was to test a novel autologous tendon graft retaining muscle tissue combined with Human Recombinant Bone Morphogenetic Protein-2 (rh-BMP-2) leading to rapid ossification of the muscle tissue, simultaneously replenishing bone stock and producing a mechanically stable bone-tendon insertion.
METHODS In 12 skeletally mature New Zealand rabbits, the ACL was resected and oversized bone tunnels were drilled to model tunnel widening. The ipsilateral semitendinosus muscle-tendon graft was harvested and folded twice. Muscle tissue was removed in the middle third but retained at both distal ends. One side was wrapped in a collagen sponge loaded with rh-BMP-2 while the other end was used as its own control.
RESULTS All animals were euthanized after six weeks. Micro-computed tomography (micro-CT) was used to analyze bone formation in 12 animals, with additional biomechanical testing to failure and histology performed for six animals each. Micro-CT showed that bone densities were higher by a factor of 2.4 in treated graft ends compared with their controls. Biomechanical testing showed a mean overall failure load of 37.5 N. Histology showed that the trabecular bone surrounding the implant was significantly (P = 0.0087) thicker on the treated (85.5 μm) compared with the control side (68.2 μm).
CONCLUSIONS We conclude that a semitendinosus graft retaining the muscle tissue stimulated by recombinant Bone Morphogenetic Protein-2 (BMP-2) allows robust osseointegration of the graft within an oversized bone tunnel in an animal model.

Abstract

BACKGROUND Bone tunnel widening after anterior cruciate ligament (ACL) reconstruction is a known complication that can lead to graft failure. Subsequent revision surgery typically involves a two-stage procedure. The aim of this study was to test a novel autologous tendon graft retaining muscle tissue combined with Human Recombinant Bone Morphogenetic Protein-2 (rh-BMP-2) leading to rapid ossification of the muscle tissue, simultaneously replenishing bone stock and producing a mechanically stable bone-tendon insertion.
METHODS In 12 skeletally mature New Zealand rabbits, the ACL was resected and oversized bone tunnels were drilled to model tunnel widening. The ipsilateral semitendinosus muscle-tendon graft was harvested and folded twice. Muscle tissue was removed in the middle third but retained at both distal ends. One side was wrapped in a collagen sponge loaded with rh-BMP-2 while the other end was used as its own control.
RESULTS All animals were euthanized after six weeks. Micro-computed tomography (micro-CT) was used to analyze bone formation in 12 animals, with additional biomechanical testing to failure and histology performed for six animals each. Micro-CT showed that bone densities were higher by a factor of 2.4 in treated graft ends compared with their controls. Biomechanical testing showed a mean overall failure load of 37.5 N. Histology showed that the trabecular bone surrounding the implant was significantly (P = 0.0087) thicker on the treated (85.5 μm) compared with the control side (68.2 μm).
CONCLUSIONS We conclude that a semitendinosus graft retaining the muscle tissue stimulated by recombinant Bone Morphogenetic Protein-2 (BMP-2) allows robust osseointegration of the graft within an oversized bone tunnel in an animal model.

Statistics

Citations

Dimensions.ai Metrics
8 citations in Web of Science®
8 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Balgrist University Hospital, Swiss Spinal Cord Injury Center
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Health Sciences > Orthopedics and Sports Medicine
Language:English
Date:October 2018
Deposited On:19 Sep 2018 12:10
Last Modified:28 Nov 2023 08:00
Publisher:Elsevier
ISSN:0968-0160
OA Status:Closed
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1016/j.knee.2018.07.010
PubMed ID:30057249
Full text not available from this repository.