Header

UZH-Logo

Maintenance Infos

Copy number profiling across glioblastoma populations has implications for clinical trial design


Cimino, Patrick J; McFerrin, Lisa; Wirsching, Hans-Georg; Arora, Sonali; Bolouri, Hamid; Rabadan, Raul; Weller, Michael; Holland, Eric C (2018). Copy number profiling across glioblastoma populations has implications for clinical trial design. Neuro-Oncology, 20(10):1368-1373.

Abstract

Background Copy number alterations form prognostic molecular subtypes of glioblastoma with clear differences in median overall survival. In this study, we leverage molecular data from several glioblastoma cohorts to define the distribution of copy number subtypes across random cohorts as well as cohorts with selection biases for patients with inherently better outcome. Methods Copy number subtype frequency was established for 4 glioblastoma patient cohorts. Two randomly selected cohorts include The Cancer Genome Atlas (TCGA) and the German Glioma Network (GGN). Two more selective cohorts include the phase II trial ARTE in elderly patients with newly diagnosed glioblastoma and a multi-institutional cohort focused on paired resected initial/recurrent glioblastoma. The paired initial/recurrent cohort also had exome data available, which allowed for evaluation of multidimensional scaling analysis. Results Smaller selective glioblastoma cohorts are enriched for copy number subtypes that are associated with better survival, reflecting the selection of patients who do well enough to enter a clinical trial or who are deemed well enough to undergo resection at recurrence. Adding exome data to copy number data provides additional data reflective of outcome. Conclusions The overall outcome for diffuse glioma patients is predicted by DNA structure at initial tumor resection. Molecular signature shifts across glioblastoma populations reflect the inherent bias of patient selection toward longer survival in clinical trials. Therefore it may be important to include molecular profiling, including copy number, when enrolling patients for clinical trials in order to balance arms and extrapolate relevance to the general glioblastoma population.

Abstract

Background Copy number alterations form prognostic molecular subtypes of glioblastoma with clear differences in median overall survival. In this study, we leverage molecular data from several glioblastoma cohorts to define the distribution of copy number subtypes across random cohorts as well as cohorts with selection biases for patients with inherently better outcome. Methods Copy number subtype frequency was established for 4 glioblastoma patient cohorts. Two randomly selected cohorts include The Cancer Genome Atlas (TCGA) and the German Glioma Network (GGN). Two more selective cohorts include the phase II trial ARTE in elderly patients with newly diagnosed glioblastoma and a multi-institutional cohort focused on paired resected initial/recurrent glioblastoma. The paired initial/recurrent cohort also had exome data available, which allowed for evaluation of multidimensional scaling analysis. Results Smaller selective glioblastoma cohorts are enriched for copy number subtypes that are associated with better survival, reflecting the selection of patients who do well enough to enter a clinical trial or who are deemed well enough to undergo resection at recurrence. Adding exome data to copy number data provides additional data reflective of outcome. Conclusions The overall outcome for diffuse glioma patients is predicted by DNA structure at initial tumor resection. Molecular signature shifts across glioblastoma populations reflect the inherent bias of patient selection toward longer survival in clinical trials. Therefore it may be important to include molecular profiling, including copy number, when enrolling patients for clinical trials in order to balance arms and extrapolate relevance to the general glioblastoma population.

Statistics

Citations

Dimensions.ai Metrics
4 citations in Web of Science®
5 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

17 downloads since deposited on 25 Oct 2018
17 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Neurology
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:3 September 2018
Deposited On:25 Oct 2018 06:12
Last Modified:24 Sep 2019 23:36
Publisher:Oxford University Press
ISSN:1522-8517
OA Status:Green
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1093/neuonc/noy108
PubMed ID:29982740

Download

Green Open Access