Header

UZH-Logo

Maintenance Infos

Degradation of neuronal function following a spinal cord injury: mechanisms and countermeasures


Dietz, V; Müller, R (2004). Degradation of neuronal function following a spinal cord injury: mechanisms and countermeasures. Brain : a journal of neurology, 127(10):2221-2231.

Abstract

The aim of this study was to evaluate the course of spinal neuronal activity following spinal cord injury (SCI). In patients with a complete SCI, the leg muscle EMG activity early and up to 33 years after an SCI was analysed during locomotor movements induced and assisted by a driven gait orthosis (DGO). Only in chronic SCI patients did a premature exhaustion of neuronal activity occur. This was reflected in a reduced density and fading of leg muscle EMG activity. The early exhaustion of EMG activity was more pronounced in the leg flexor (e.g. biceps femoris) than extensor (e.g. gastrocnemius) muscles. The timing of the leg muscle pattern remained unchanged in the chronic patients. A preserved amplitude of motor action potentials following repetitive peripheral nerve stimulation and during spasms indicated an interneuronal site of impairment. In patients who participated in a locomotor training programme lasting up to 13 weeks, no positive effect on the slope of exhaustion was seen. It is concluded that a degradation of spinal neuronal activity takes place following an SCI. If in the future regeneration of spinal tract fibres becomes feasible in patients with complete SCI, such an approach can only become functionally successful if neuronal activity below the level of the lesion is maintained. This might be achieved by a continuous training approach starting early after injury

Abstract

The aim of this study was to evaluate the course of spinal neuronal activity following spinal cord injury (SCI). In patients with a complete SCI, the leg muscle EMG activity early and up to 33 years after an SCI was analysed during locomotor movements induced and assisted by a driven gait orthosis (DGO). Only in chronic SCI patients did a premature exhaustion of neuronal activity occur. This was reflected in a reduced density and fading of leg muscle EMG activity. The early exhaustion of EMG activity was more pronounced in the leg flexor (e.g. biceps femoris) than extensor (e.g. gastrocnemius) muscles. The timing of the leg muscle pattern remained unchanged in the chronic patients. A preserved amplitude of motor action potentials following repetitive peripheral nerve stimulation and during spasms indicated an interneuronal site of impairment. In patients who participated in a locomotor training programme lasting up to 13 weeks, no positive effect on the slope of exhaustion was seen. It is concluded that a degradation of spinal neuronal activity takes place following an SCI. If in the future regeneration of spinal tract fibres becomes feasible in patients with complete SCI, such an approach can only become functionally successful if neuronal activity below the level of the lesion is maintained. This might be achieved by a continuous training approach starting early after injury

Statistics

Citations

Dimensions.ai Metrics
67 citations in Web of Science®
77 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

29 downloads since deposited on 09 Oct 2018
16 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:National licences > 142-005
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Scopus Subject Areas:Health Sciences > Neurology (clinical)
Language:English
Date:13 September 2004
Deposited On:09 Oct 2018 13:45
Last Modified:31 Jul 2020 01:56
Publisher:Oxford University Press
ISSN:0006-8950
OA Status:Hybrid
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1093/brain/awh255
Related URLs:https://www.swissbib.ch/Search/Results?lookfor=nationallicenceoxford101093brainawh255 (Library Catalogue)
PubMed ID:15269117

Download

Hybrid Open Access

Download PDF  'Degradation of neuronal function following a spinal cord injury: mechanisms and countermeasures'.
Preview
Content: Published Version
Language: English
Filetype: PDF (Nationallizenz 142-005)
Size: 299kB
View at publisher