Header

UZH-Logo

Maintenance Infos

DNA methylation in rat tissues by a series of homologous aliphatic nitrosamines ranging from N-nitrosodimethylamine to N-nitrosomethyldodecylamine


von Hofe, Eric; Schmerold, Ivo; Lijinsky, William; Jeltsch, Willy; Kleihues, Paul (1987). DNA methylation in rat tissues by a series of homologous aliphatic nitrosamines ranging from N-nitrosodimethylamine to N-nitrosomethyldodecylamine. Carcinogenesis, 8(9):1337-1341.

Abstract

Aliphatic N-nitrosomethylalkylamines exhibit a remarkable organ specificity in rats, the principal targets for tumour induction being liver, oesophagus, urinary bladder and lung. We have determined the extent of DNA methylation in these tissues following a single oral dose (0.1 mmol/kg; 6 h survival) of each of 12 homologues, ranging from N-nitrosodimethylamine (C1) to N-nitrosomethyldodecylamine (C12). Methylpurines (7-and O6-methylguanine) were determined by cation exchange HPLC with fluorescence detection. Highest levels of hepatic DNA methylation were found with N-nitrosodimethylamine (C1) and N-nitrosomethylethylamine (C2), the most potent hepatocarcinogens in this series. Concentrations of methylpurines in liver DNA decreased with increasing chain length for C1-C5. Administration of the higher homologues (C6-C12) caused levels of DNA methylation which by themselves were considered too low to account for their hepatocarcinogenicity. In rat oesophagus, DNA methylation closely paralleled carcinogenicity, the butyl and pentyl derivatives (C4, C5) being most effective. In rat lung, the extent of DNA methylation was generally lower and there was no apparent correlation with carcinogenicity. Methylation of kidney DNA also decreased with increasing chain length and was only detectable for C1-C5. In urinary bladder DNA, methylpurines were below or close to the limit of detection. It is concluded that the initiation of malignant transformation by DNA methylation alone (through hydroxylation at the methylene α-carbon) could be operative for Cl in kidney and lung, for Cl and C2 in liver, and C3-C5 in oesophagus. For the higher homologues, the extent of DNA methylation seems insufficient to explain the complex pattern of tissue specificity, suggesting that DNA modification other than, or in addition to, methylation may be responsible

Abstract

Aliphatic N-nitrosomethylalkylamines exhibit a remarkable organ specificity in rats, the principal targets for tumour induction being liver, oesophagus, urinary bladder and lung. We have determined the extent of DNA methylation in these tissues following a single oral dose (0.1 mmol/kg; 6 h survival) of each of 12 homologues, ranging from N-nitrosodimethylamine (C1) to N-nitrosomethyldodecylamine (C12). Methylpurines (7-and O6-methylguanine) were determined by cation exchange HPLC with fluorescence detection. Highest levels of hepatic DNA methylation were found with N-nitrosodimethylamine (C1) and N-nitrosomethylethylamine (C2), the most potent hepatocarcinogens in this series. Concentrations of methylpurines in liver DNA decreased with increasing chain length for C1-C5. Administration of the higher homologues (C6-C12) caused levels of DNA methylation which by themselves were considered too low to account for their hepatocarcinogenicity. In rat oesophagus, DNA methylation closely paralleled carcinogenicity, the butyl and pentyl derivatives (C4, C5) being most effective. In rat lung, the extent of DNA methylation was generally lower and there was no apparent correlation with carcinogenicity. Methylation of kidney DNA also decreased with increasing chain length and was only detectable for C1-C5. In urinary bladder DNA, methylpurines were below or close to the limit of detection. It is concluded that the initiation of malignant transformation by DNA methylation alone (through hydroxylation at the methylene α-carbon) could be operative for Cl in kidney and lung, for Cl and C2 in liver, and C3-C5 in oesophagus. For the higher homologues, the extent of DNA methylation seems insufficient to explain the complex pattern of tissue specificity, suggesting that DNA modification other than, or in addition to, methylation may be responsible

Statistics

Citations

Dimensions.ai Metrics
48 citations in Web of Science®
50 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

29 downloads since deposited on 15 Oct 2018
28 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:National licences > 142-005
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:1 January 1987
Deposited On:15 Oct 2018 14:25
Last Modified:24 Sep 2019 23:38
Publisher:Oxford University Press
ISSN:0143-3334
OA Status:Green
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1093/carcin/8.9.1337
Related URLs:https://www.swissbib.ch/Search/Results?lookfor=nationallicenceoxford101093carcin891337 (Library Catalogue)
PubMed ID:3621471

Download

Green Open Access

Download PDF  'DNA methylation in rat tissues by a series of homologous aliphatic nitrosamines ranging from N-nitrosodimethylamine to N-nitrosomethyldodecylamine'.
Preview
Content: Published Version
Language: English
Filetype: PDF (Nationallizenz 142-005)
Size: 510kB
View at publisher