Header

UZH-Logo

Maintenance Infos

Andrology: Effects of nitric oxide on human spermatozoa: evidence that nitric oxide decreases sperm motility and induces sperm toxicity


Rosselli, Marinella; Dubey, Raghvendra K; Imthurn, Bruno; Macas, Ervin; Keller, Paul J (1995). Andrology: Effects of nitric oxide on human spermatozoa: evidence that nitric oxide decreases sperm motility and induces sperm toxicity. Human Reproduction, 10(7):1786-1790.

Abstract

Endogenous nitric oxide (NO) is an important functional mediator in several physiological systems, including the reproductive system. However, when generated in excessive amounts for long periods, mainly during immunological reactions, NO is cytotoxic and cytostatic for invading microbes, as well as for the cells generating it and the tissues present around it. Since infertility associated with urogenital tract infection in males and females is also accompanied by reduced sperm motility and viability, it is possible that reduced fertility in these patients is due to NO-induced sperm toxicity. We therefore evaluated the direct effects of NO, chemically derived from S-nitroso-N-acetylpenicillamine (SNAP, 0.012-0.6 mM) and sodium nitroprusside (SNP, 0.25-2.5 mM), on the motility and viability of human spermatozoa. Furthermore, we tested whether inhibition of NO synthesis prevents sperm motility and viability by incubating washed total cells present in the semen (spermatozoa, round cells) with N-nitro-L-arginine-methyl-ester (L-NAME), a NO synthesis inhibitor. Treatment of purified spermatozoa with SNAP or SNP decreased forward progressive sperm motility and straight line velocity, and also increased the percentage of immotile spermatozoa in a concentration-dependent manner. Furthermore, the percentage of immotile spermatozoa positively correlated with the percentage of dead spermatozoa. In contrast to freshly prepared SNAP, SNAP preincubated for 48 h had no effect on the motility and viability of the spermatozoa. Furthermore, as compared to untreated controls, a significantly higher percentage of forward progressive sperm motility as well as viability (P < 0.05) was maintained in washed semen incubated with L-NAME (0.15 mM). Seminal plasma concentrations of nitrite-nitrate (stabile metabolites of NO/106 spermatozoa correlated positively (P < 0.05) with the percentage of immotile spermatozoa. Our results suggest that NO can cause sperm toxicity as well as inhibit sperm motility. In conclusion, excessive NO synthesis in response to infection and inflammation could be an important factor contributing to functional change of the spermatozoa, leading to their dysfunction and to infertility

Abstract

Endogenous nitric oxide (NO) is an important functional mediator in several physiological systems, including the reproductive system. However, when generated in excessive amounts for long periods, mainly during immunological reactions, NO is cytotoxic and cytostatic for invading microbes, as well as for the cells generating it and the tissues present around it. Since infertility associated with urogenital tract infection in males and females is also accompanied by reduced sperm motility and viability, it is possible that reduced fertility in these patients is due to NO-induced sperm toxicity. We therefore evaluated the direct effects of NO, chemically derived from S-nitroso-N-acetylpenicillamine (SNAP, 0.012-0.6 mM) and sodium nitroprusside (SNP, 0.25-2.5 mM), on the motility and viability of human spermatozoa. Furthermore, we tested whether inhibition of NO synthesis prevents sperm motility and viability by incubating washed total cells present in the semen (spermatozoa, round cells) with N-nitro-L-arginine-methyl-ester (L-NAME), a NO synthesis inhibitor. Treatment of purified spermatozoa with SNAP or SNP decreased forward progressive sperm motility and straight line velocity, and also increased the percentage of immotile spermatozoa in a concentration-dependent manner. Furthermore, the percentage of immotile spermatozoa positively correlated with the percentage of dead spermatozoa. In contrast to freshly prepared SNAP, SNAP preincubated for 48 h had no effect on the motility and viability of the spermatozoa. Furthermore, as compared to untreated controls, a significantly higher percentage of forward progressive sperm motility as well as viability (P < 0.05) was maintained in washed semen incubated with L-NAME (0.15 mM). Seminal plasma concentrations of nitrite-nitrate (stabile metabolites of NO/106 spermatozoa correlated positively (P < 0.05) with the percentage of immotile spermatozoa. Our results suggest that NO can cause sperm toxicity as well as inhibit sperm motility. In conclusion, excessive NO synthesis in response to infection and inflammation could be an important factor contributing to functional change of the spermatozoa, leading to their dysfunction and to infertility

Statistics

Citations

Dimensions.ai Metrics
137 citations in Web of Science®
170 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

6 downloads since deposited on 12 Oct 2018
6 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:National licences > 142-005
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:1 July 1995
Deposited On:12 Oct 2018 07:18
Last Modified:24 Nov 2018 02:55
Publisher:Oxford University Press
ISSN:0268-1161
OA Status:Green
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1093/oxfordjournals.humrep.a136174
Related URLs:https://www.swissbib.ch/Search/Results?lookfor=nationallicenceoxford101093oxfordjournalshumrepa136174 (Library Catalogue)

Download

Download PDF  'Andrology: Effects of nitric oxide on human spermatozoa: evidence that nitric oxide decreases sperm motility and induces sperm toxicity'.
Preview
Content: Published Version
Language: English
Filetype: PDF (Nationallizenz 142-005)
Size: 582kB
View at publisher