Abstract
The role of the endothelin system, the functional counterpart of NO, in the pathophysiology of polyglobulia remains still elusive. Therefore a novel erythropoietin overexpressing mouse was generated, with hematocrit levels of about 80%. Hence, we analyzed vascular contractions to ET-1 and big endothelin-1 (big ET-1), endothelin-1 (ET-1) promoter activity, ET-1 immunochemistry, endothelin-1 (ET-1)-protein tissue levels, ETA/B-receptor mRNA expression in this novel transgenic model of severe polyglobulia. For analysis of ET-1 promotor activity, EPO transgenic mice were mated with homozygous transgenic mice expressing the lacZ gene under control of the human ET-1 promoter and immunochistochemistry for gal blue was performed in lacZ transgenic animals. Notwithstanding markedly increased eNOS expression, NO-mediated endothelium-dependent relaxation and circulating and vascular tissue NO levels indicating enhanced bioavailability of NO, ET-1 tissue levels were also augmented in heart, kidney, liver and aorta (2.2±0.3 vs. 0.5±0.1 pg/mg tissue; P<0.01) of transgenic polyglobulic animals. Accordingly, immunohistochemistry demonstrated enhanced expression of ET-1 protein in the vascular wall of polyglobulic animals as compared to controls (p< 0.05), while increase of ET-1 promoter activity was confined to the perivascular tissue (P<0.05). NOS inhibition with L-NAME unmasked increased vascular reactivity to ET-1 and bigET-1 and aortic ETA/B receptor mRNA gene expression was enhanced (p<0.05 vs. controls). Administration of the NOS inhibitor L-NAME led to acute vasoconstriction of peripheral resistance vessels, hypertension and death of transgenic mice within 2 days, while wildtypes did not show increased mortality. Treatment with the ETA antagonist darusentan doubled survival time of transgenic polyglobulic mice after NO synthase inhibition (p<0.01 vs placebo). In conclusion, in this study we provide first evidence that the tissue endothelin system is activated by polyglobulia. Together with a stimulated NO system it contributes to cardiovascular regulation in pathophysiological conditions associated with increased hematocrit