Header

UZH-Logo

Maintenance Infos

Compositional and functional stability of aerobic methane consuming communities in drained and rewetted peat meadows


Krause, Sascha; Niklaus, Pascal A; Badwan Morcillo, Sara; Meima Franke, Marion; Lüke, Claudia; Reim, Andreas; Bodelier, Paul L E (2015). Compositional and functional stability of aerobic methane consuming communities in drained and rewetted peat meadows. FEMS Microbiology Ecology, 91(11):fiv119.

Abstract

The restoration of peatlands is an important strategy to counteract subsidence and loss of biodiversity. However, responses of important microbial soil processes are poorly understood. We assessed functioning, diversity and spatial organization of methanotrophic communities in drained and rewetted peat meadows with different water table management and agricultural practice. Results show that the methanotrophic diversity was similar between drained and rewetted sites with a remarkable dominance of the genus Methylocystis. Enzyme kinetics depicted no major differences, indicating flexibility in the methane (CH4) concentrations that can be used by the methanotrophic community. Short-term flooding led to temporary elevated CH4 emission but to neither major changes in abundances of methane-oxidizing bacteria (MOB) nor major changes in CH4 consumption kinetics in drained agriculturally used peat meadows. Radiolabeling and autoradiographic imaging of intact soil cores revealed a markedly different spatial arrangement of the CH4 consuming zone in cores exposed to near-atmospheric and elevated CH4. The observed spatial patterns of CH4 consumption in drained peat meadows with and without short-term flooding highlighted the spatial complexity and responsiveness of the CH4 consuming zone upon environmental change. The methanotrophic microbial community is not generally altered and harbors MOB that can cover a large range of CH4 concentrations offered due to water-table fluctuations, effectively mitigating CH4 emissions

Abstract

The restoration of peatlands is an important strategy to counteract subsidence and loss of biodiversity. However, responses of important microbial soil processes are poorly understood. We assessed functioning, diversity and spatial organization of methanotrophic communities in drained and rewetted peat meadows with different water table management and agricultural practice. Results show that the methanotrophic diversity was similar between drained and rewetted sites with a remarkable dominance of the genus Methylocystis. Enzyme kinetics depicted no major differences, indicating flexibility in the methane (CH4) concentrations that can be used by the methanotrophic community. Short-term flooding led to temporary elevated CH4 emission but to neither major changes in abundances of methane-oxidizing bacteria (MOB) nor major changes in CH4 consumption kinetics in drained agriculturally used peat meadows. Radiolabeling and autoradiographic imaging of intact soil cores revealed a markedly different spatial arrangement of the CH4 consuming zone in cores exposed to near-atmospheric and elevated CH4. The observed spatial patterns of CH4 consumption in drained peat meadows with and without short-term flooding highlighted the spatial complexity and responsiveness of the CH4 consuming zone upon environmental change. The methanotrophic microbial community is not generally altered and harbors MOB that can cover a large range of CH4 concentrations offered due to water-table fluctuations, effectively mitigating CH4 emissions

Statistics

Citations

Dimensions.ai Metrics
4 citations in Web of Science®
3 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

43 downloads since deposited on 23 Oct 2018
42 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:National licences > 142-005
Dewey Decimal Classification:580 Plants (Botany)
Uncontrolled Keywords:14C labelling; atmospheric CH4; peat land; pyrosequencing; restoration; spatial micro-distribution
Language:English
Date:1 November 2015
Deposited On:23 Oct 2018 18:06
Last Modified:24 Sep 2019 23:39
Publisher:Oxford University Press
ISSN:0168-6496
OA Status:Green
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1093/femsec/fiv119
Related URLs:https://www.swissbib.ch/Search/Results?lookfor=nationallicenceoxford101093femsecfiv119 (Library Catalogue)
PubMed ID:26449384

Download

Green Open Access

Download PDF  'Compositional and functional stability of aerobic methane consuming communities in drained and rewetted peat meadows'.
Preview
Content: Published Version
Language: English
Filetype: PDF (Nationallizenz 142-005)
Size: 5MB
View at publisher