Header

UZH-Logo

Maintenance Infos

SMC1 coordinates DNA double-strand break repair pathways


Schar, P (2004). SMC1 coordinates DNA double-strand break repair pathways. Nucleic Acids Research, 32(13):3921-3929.

Abstract

The SMC1/SMC3 heterodimer acts in sister chromatid cohesion, and recent data indicate a function in DNA double-strand break repair (DSBR). Since this role of SMC proteins has remained largely elusive, we explored interactions between SMC1 and the homologous recombination (HR) or non-homologous end-joining (NHEJ) pathways for DSBR in Saccharomyces cerevisiae. Analysis of conditional single- and double mutants of smc1-2 with rad52Δ, rad54Δ, rad50Δ or dnl4Δ illustrates a significant contribution of SMC1 to the overall capacity of cells to repair DSBs. smc1 but not smc2 mutants show increased hypersensitivity of HR mutants to ionizing irradiation and to the DNA crosslinking agent cis-platin. Haploid, but not diploid smc1-2 mutants were severely affected in repairing multiple genomic DNA breaks, suggesting a selective role of SMC1 in sister chromatid recombination. smc1-2 mutants were also 15-fold less efficient and highly error-prone in plasmid end-joining through the NHEJ pathway. Strikingly, inactivation of RAD52 or RAD54 fully rescued efficiency and accuracy of NHEJ in the smc1 background. Therefore, we propose coordination of HR and NHEJ processes by Smc1p through interaction with the RAD52 pathway

Abstract

The SMC1/SMC3 heterodimer acts in sister chromatid cohesion, and recent data indicate a function in DNA double-strand break repair (DSBR). Since this role of SMC proteins has remained largely elusive, we explored interactions between SMC1 and the homologous recombination (HR) or non-homologous end-joining (NHEJ) pathways for DSBR in Saccharomyces cerevisiae. Analysis of conditional single- and double mutants of smc1-2 with rad52Δ, rad54Δ, rad50Δ or dnl4Δ illustrates a significant contribution of SMC1 to the overall capacity of cells to repair DSBs. smc1 but not smc2 mutants show increased hypersensitivity of HR mutants to ionizing irradiation and to the DNA crosslinking agent cis-platin. Haploid, but not diploid smc1-2 mutants were severely affected in repairing multiple genomic DNA breaks, suggesting a selective role of SMC1 in sister chromatid recombination. smc1-2 mutants were also 15-fold less efficient and highly error-prone in plasmid end-joining through the NHEJ pathway. Strikingly, inactivation of RAD52 or RAD54 fully rescued efficiency and accuracy of NHEJ in the smc1 background. Therefore, we propose coordination of HR and NHEJ processes by Smc1p through interaction with the RAD52 pathway

Statistics

Citations

Dimensions.ai Metrics
49 citations in Web of Science®
52 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

13 downloads since deposited on 19 Oct 2018
7 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:National licences > 142-005
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Scopus Subject Areas:Life Sciences > Genetics
Language:English
Date:16 July 2004
Deposited On:19 Oct 2018 06:15
Last Modified:31 Jul 2020 02:06
Publisher:Oxford University Press
ISSN:0305-1048
OA Status:Hybrid
Publisher DOI:https://doi.org/10.1093/nar/gkh716
Related URLs:https://www.swissbib.ch/Search/Results?lookfor=nationallicenceoxford101093nargkh716 (Library Catalogue)

Download

Hybrid Open Access

Download PDF  'SMC1 coordinates DNA double-strand break repair pathways'.
Preview
Content: Published Version
Language: English
Filetype: PDF (Nationallizenz 142-005)
Size: 453kB
View at publisher