Header

UZH-Logo

Maintenance Infos

A nominally second-order cell-centered finite volume scheme for simulating three-dimensional anisotropic diffusion equations on unstructured grids


Jacq, Pascal; Maire, Pierre-Henri; Abgrall, Rémi (2014). A nominally second-order cell-centered finite volume scheme for simulating three-dimensional anisotropic diffusion equations on unstructured grids. Communications in Computational Physics, 16(4):841-891.

Abstract

We present a finite volume based cell-centered method for solving diffusion equations on three-dimensional unstructured grids with general tensor conduction. Our main motivation concerns the numerical simulation of the coupling between fluid flows and heat transfers. The corresponding numerical scheme is characterized by cell-centered unknowns and a local stencil. Namely, the scheme results in a global sparse diffusion matrix, which couples only the cell-centered unknowns. The space discretization relies on the partition of polyhedral cells into sub-cells and on the partition of cell faces into sub-faces. It is characterized by the introduction of sub-face normal fluxes and sub-face temperatures, which are auxiliary unknowns. A sub-cellbased variational formulation of the constitutive Fourier law allows to construct an explicit approximation of the sub-face normal heat fluxes in terms of the cell-centered temperature and the adjacent sub-face temperatures. The elimination of the sub-face temperatures with respect to the cell-centered temperatures is achieved locally at each node by solving a small and sparse linear system. This systemis obtained by enforcing the continuity condition of the normal heat flux across each sub-cell interface impinging at the node under consideration. The parallel implementation of the numerical algorithm and its efficiency are described and analyzed. The accuracy and the robustness of the proposed finite volumemethod are assessed bymeans of various numerical test cases.

Abstract

We present a finite volume based cell-centered method for solving diffusion equations on three-dimensional unstructured grids with general tensor conduction. Our main motivation concerns the numerical simulation of the coupling between fluid flows and heat transfers. The corresponding numerical scheme is characterized by cell-centered unknowns and a local stencil. Namely, the scheme results in a global sparse diffusion matrix, which couples only the cell-centered unknowns. The space discretization relies on the partition of polyhedral cells into sub-cells and on the partition of cell faces into sub-faces. It is characterized by the introduction of sub-face normal fluxes and sub-face temperatures, which are auxiliary unknowns. A sub-cellbased variational formulation of the constitutive Fourier law allows to construct an explicit approximation of the sub-face normal heat fluxes in terms of the cell-centered temperature and the adjacent sub-face temperatures. The elimination of the sub-face temperatures with respect to the cell-centered temperatures is achieved locally at each node by solving a small and sparse linear system. This systemis obtained by enforcing the continuity condition of the normal heat flux across each sub-cell interface impinging at the node under consideration. The parallel implementation of the numerical algorithm and its efficiency are described and analyzed. The accuracy and the robustness of the proposed finite volumemethod are assessed bymeans of various numerical test cases.

Statistics

Citations

Dimensions.ai Metrics
1 citation in Web of Science®
1 citation in Scopus®
Google Scholar™

Altmetrics

Downloads

18 downloads since deposited on 25 Oct 2018
18 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:National licences > 142-005
Dewey Decimal Classification:510 Mathematics
Language:English
Date:1 October 2014
Deposited On:25 Oct 2018 16:07
Last Modified:01 Oct 2019 00:01
Publisher:Global Science Press
ISSN:1815-2406
OA Status:Green
Publisher DOI:https://doi.org/10.4208/cicp.310513.170314a
Related URLs:https://www.swissbib.ch/Search/Results?lookfor=nationallicencecambridge104208cicp310513170314a (Library Catalogue)

Download

Green Open Access

Download PDF  'A nominally second-order cell-centered finite volume scheme for simulating three-dimensional anisotropic diffusion equations on unstructured grids'.
Preview
Content: Published Version
Language: English
Filetype: PDF (Nationallizenz 142-005)
Size: 6MB
View at publisher