Header

UZH-Logo

Maintenance Infos

Sequential loss of myelin proteins during Wallerian degeneration in the human spinal cord


Buss, A (2004). Sequential loss of myelin proteins during Wallerian degeneration in the human spinal cord. Brain : a journal of neurology, 128(2):356-364.

Abstract

Axons undergo Wallerian degeneration (WD) distal to a point of injury. In the lesioned PNS, WD may be followed by successful axonal regeneration and functional recovery. However, in the lesioned mammalian CNS, there is no significant axonal regeneration. Myelin-associated proteins (MAPs) have been shown to play significant roles in preventing axonal regeneration in the CNS. Since relatively little is known about such events in human CNS pathologies, we performed an immunohistochemical investigation on the temporal changes of four MAPs during WD in post-mortem spinal cords of 22 patients who died 2 days to 30 years after either cerebral infarction or traumatic spinal cord injury. In contrast to experimental studies in rats, the loss of myelin sheaths is greatly delayed in humans and continues slowly over a number of years. However, in agreement with animal data, a sequential loss of myelin proteins was found which was dependent on their location within the myelin sheath. Myelin proteins situated on the peri-axonal membrane were the first to be lost, the time course correlating with the loss of axonal markers. Proteins located within compact myelin or on the outer myelin membrane were still detectable 3 years after injury in degenerating fibre tracts, long after the disappearance of the corresponding axons. The persistence of axon growth-inhibitory proteins such as NOGO-A in degenerating nerve fibre tracts may contribute to the maintenance of an environment that is hostile to axon regeneration, long after the initial injury. The present data highlight the importance of correlating the well documented, lesion-induced changes that take place in controlled laboratory investigations with those that take place in the clinical domain

Abstract

Axons undergo Wallerian degeneration (WD) distal to a point of injury. In the lesioned PNS, WD may be followed by successful axonal regeneration and functional recovery. However, in the lesioned mammalian CNS, there is no significant axonal regeneration. Myelin-associated proteins (MAPs) have been shown to play significant roles in preventing axonal regeneration in the CNS. Since relatively little is known about such events in human CNS pathologies, we performed an immunohistochemical investigation on the temporal changes of four MAPs during WD in post-mortem spinal cords of 22 patients who died 2 days to 30 years after either cerebral infarction or traumatic spinal cord injury. In contrast to experimental studies in rats, the loss of myelin sheaths is greatly delayed in humans and continues slowly over a number of years. However, in agreement with animal data, a sequential loss of myelin proteins was found which was dependent on their location within the myelin sheath. Myelin proteins situated on the peri-axonal membrane were the first to be lost, the time course correlating with the loss of axonal markers. Proteins located within compact myelin or on the outer myelin membrane were still detectable 3 years after injury in degenerating fibre tracts, long after the disappearance of the corresponding axons. The persistence of axon growth-inhibitory proteins such as NOGO-A in degenerating nerve fibre tracts may contribute to the maintenance of an environment that is hostile to axon regeneration, long after the initial injury. The present data highlight the importance of correlating the well documented, lesion-induced changes that take place in controlled laboratory investigations with those that take place in the clinical domain

Statistics

Citations

Dimensions.ai Metrics
66 citations in Web of Science®
67 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

15 downloads since deposited on 19 Oct 2018
4 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:National licences > 142-005
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Scopus Subject Areas:Health Sciences > Neurology (clinical)
Language:English
Date:22 December 2004
Deposited On:19 Oct 2018 06:20
Last Modified:15 Apr 2021 14:49
Publisher:Oxford University Press
ISSN:0006-8950
OA Status:Hybrid
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1093/brain/awh355

Download

Hybrid Open Access

Download PDF  'Sequential loss of myelin proteins during Wallerian degeneration in the human spinal cord'.
Preview
Content: Published Version
Language: English
Filetype: PDF (Nationallizenz 142-005)
Size: 746kB
View at publisher