Header

UZH-Logo

Maintenance Infos

Performance of a new pulse contour method for continuous cardiac output monitoring: validation in critically ill patients


Bendjelid, K; Marx, G; Kiefer, N; Simon, T P; Geisen, M; Hoeft, A; Siegenthaler, N; Hofer, C K (2013). Performance of a new pulse contour method for continuous cardiac output monitoring: validation in critically ill patients. British Journal of Anaesthesia, 111(4):573-579.

Abstract

Background A new calibrated pulse wave analysis method (VolumeView™/EV1000™, Edwards Lifesciences, Irvine, CA, USA) has been developed to continuously monitor cardiac output (CO). The aim of this study was to compare the performance of the VolumeView method, and of the PiCCO2™ pulse contour method (Pulsion Medical Systems, Munich, Germany), with reference transpulmonary thermodilution (TPTD) CO measurements. Methods This was a prospective, multicentre observational study performed in the surgical and interdisciplinary intensive care units of four tertiary hospitals. Seventy-two critically ill patients were monitored with a central venous catheter, and a thermistor-tipped femoral arterial VolumeView™ catheter connected to the EV1000™ monitor. After initial calibration by TPTD CO was continuously assessed using the VolumeView-CCO software (CCOVolumeView) during a 72 h period. TPTD was performed in order to obtain reference CO values (COREF). TPTD and arterial wave signals were transmitted to a PiCCO2™ monitor in order to obtain CCOPiCCO values. CCOVolumeView and CCOPiCCO were recorded over a 5 min interval before assessment of COTPTD. Bland-Altman analysis, %errors, and concordance (trend analysis) were calculated. Results A total of 338 matched sets of data were available for comparison. Bias for CCOVolumeView−COREF was −0.07 litre min−1 and for CCOPiCCO-COREF +0.03 litre min−1. Corresponding limits of agreement were 2.00 and 2.48 litre min−1 (P<0.01), %errors 29 and 37%, respectively. Trending capabilities were comparable for both techniques. Conclusions The performance of the new VolumeView™-CCO method is as reliable as the PiCCO2™-CCO pulse wave analysis in critically ill patients. However, an improved precision was observed with the VolumeView™ technique. Clinicaltrials.gov identifier NCT01405040

Abstract

Background A new calibrated pulse wave analysis method (VolumeView™/EV1000™, Edwards Lifesciences, Irvine, CA, USA) has been developed to continuously monitor cardiac output (CO). The aim of this study was to compare the performance of the VolumeView method, and of the PiCCO2™ pulse contour method (Pulsion Medical Systems, Munich, Germany), with reference transpulmonary thermodilution (TPTD) CO measurements. Methods This was a prospective, multicentre observational study performed in the surgical and interdisciplinary intensive care units of four tertiary hospitals. Seventy-two critically ill patients were monitored with a central venous catheter, and a thermistor-tipped femoral arterial VolumeView™ catheter connected to the EV1000™ monitor. After initial calibration by TPTD CO was continuously assessed using the VolumeView-CCO software (CCOVolumeView) during a 72 h period. TPTD was performed in order to obtain reference CO values (COREF). TPTD and arterial wave signals were transmitted to a PiCCO2™ monitor in order to obtain CCOPiCCO values. CCOVolumeView and CCOPiCCO were recorded over a 5 min interval before assessment of COTPTD. Bland-Altman analysis, %errors, and concordance (trend analysis) were calculated. Results A total of 338 matched sets of data were available for comparison. Bias for CCOVolumeView−COREF was −0.07 litre min−1 and for CCOPiCCO-COREF +0.03 litre min−1. Corresponding limits of agreement were 2.00 and 2.48 litre min−1 (P<0.01), %errors 29 and 37%, respectively. Trending capabilities were comparable for both techniques. Conclusions The performance of the new VolumeView™-CCO method is as reliable as the PiCCO2™-CCO pulse wave analysis in critically ill patients. However, an improved precision was observed with the VolumeView™ technique. Clinicaltrials.gov identifier NCT01405040

Statistics

Citations

Dimensions.ai Metrics
33 citations in Web of Science®
36 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

37 downloads since deposited on 31 Oct 2018
14 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:National licences > 142-005
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Health Sciences > Anesthesiology and Pain Medicine
Uncontrolled Keywords:continuous cardiac output; pulse wave analysis; transpulmonary thermodilution
Language:English
Date:1 October 2013
Deposited On:31 Oct 2018 16:31
Last Modified:15 Apr 2021 14:49
Publisher:Elsevier
ISSN:0007-0912
OA Status:Hybrid
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1093/bja/aet116
PubMed ID:23625132

Download

Hybrid Open Access

Download PDF  'Performance of a new pulse contour method for continuous cardiac output monitoring: validation in critically ill patients'.
Preview
Content: Published Version
Language: English
Filetype: PDF (Nationallizenz 142-005)
Size: 251kB
View at publisher