Header

UZH-Logo

Maintenance Infos

Globular clusters, satellite galaxies and stellar haloes from early dark matter peaks


Moore, B; Diemand, J; Madau, P; Zemp, M; Stadel, J (2006). Globular clusters, satellite galaxies and stellar haloes from early dark matter peaks. Monthly Notices of the Royal Astronomical Society, 368(2):563-570.

Abstract

The Milky Way contains several distinct old stellar components that provide a fossil record of its formation. We can understand their spatial distribution and kinematics in a hierarchical formation scenario by associating the protogalactic fragments envisaged by Searle & Zinn (1978) with the rare peaks able to cool gas in the cold dark matter density field collapsing at redshift z > 10. We use hierarchical structure formation simulations to explore the kinematics and spatial distribution of these early star-forming structures in galaxy haloes today. Most of the protogalaxies rapidly merge, their stellar contents and dark matter becoming smoothly distributed and forming the inner Galactic halo. The metal-poor globular clusters and old halo stars become tracers of this early evolutionary phase, centrally biased and naturally reproducing the observed steep fall off with radius. The most outlying peaks fall in late and survive to the present day as satellite galaxies. The observed radial velocity dispersion profile and the local radial velocity anisotropy of Milky Way halo stars are successfully reproduced in this model. If this epoch of structure formation coincides with a suppression of further cooling into lower sigma peaks then we can reproduce the rarity, kinematics and spatial distribution of satellite galaxies as suggested by Bullock, Kravtsov & Weinberg (2000). Reionization at z= 12 ± 2 provides a natural solution to the missing satellites problem. Measuring the distribution of globular clusters and halo light on scales from galaxies to clusters could be used to constrain global versus local reionization models. If reionization occurs contemporary, our model predicts a constant frequency of blue globulars relative to the host halo mass, except for dwarf galaxies where the average relative frequencies become smaller

Abstract

The Milky Way contains several distinct old stellar components that provide a fossil record of its formation. We can understand their spatial distribution and kinematics in a hierarchical formation scenario by associating the protogalactic fragments envisaged by Searle & Zinn (1978) with the rare peaks able to cool gas in the cold dark matter density field collapsing at redshift z > 10. We use hierarchical structure formation simulations to explore the kinematics and spatial distribution of these early star-forming structures in galaxy haloes today. Most of the protogalaxies rapidly merge, their stellar contents and dark matter becoming smoothly distributed and forming the inner Galactic halo. The metal-poor globular clusters and old halo stars become tracers of this early evolutionary phase, centrally biased and naturally reproducing the observed steep fall off with radius. The most outlying peaks fall in late and survive to the present day as satellite galaxies. The observed radial velocity dispersion profile and the local radial velocity anisotropy of Milky Way halo stars are successfully reproduced in this model. If this epoch of structure formation coincides with a suppression of further cooling into lower sigma peaks then we can reproduce the rarity, kinematics and spatial distribution of satellite galaxies as suggested by Bullock, Kravtsov & Weinberg (2000). Reionization at z= 12 ± 2 provides a natural solution to the missing satellites problem. Measuring the distribution of globular clusters and halo light on scales from galaxies to clusters could be used to constrain global versus local reionization models. If reionization occurs contemporary, our model predicts a constant frequency of blue globulars relative to the host halo mass, except for dwarf galaxies where the average relative frequencies become smaller

Statistics

Citations

Dimensions.ai Metrics
178 citations in Web of Science®
183 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

18 downloads since deposited on 31 Oct 2018
18 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:National licences > 142-005
Dewey Decimal Classification:530 Physics
Language:English
Date:11 May 2006
Deposited On:31 Oct 2018 16:57
Last Modified:06 Nov 2018 22:46
Publisher:Oxford University Press
ISSN:0035-8711
OA Status:Green
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1111/j.1365-2966.2006.10116.x
Related URLs:https://www.swissbib.ch/Search/Results?lookfor=nationallicenceoxford101111j13652966200610116x (Library Catalogue)

Download

Download PDF  'Globular clusters, satellite galaxies and stellar haloes from early dark matter peaks'.
Preview
Content: Published Version
Language: English
Filetype: PDF (Nationallizenz 142-005)
Size: 596kB
View at publisher