Header

UZH-Logo

Maintenance Infos

An analysis of the spatial arrangement of the myocardial aggregates making up the wall of the left ventricle


Dorri, Farshad; Niederer, Peter F; Redmann, Klaus; Lunkenheimer, Paul P; Cryer, Colin W; Anderson, Robert H (2007). An analysis of the spatial arrangement of the myocardial aggregates making up the wall of the left ventricle. European Journal of Cardio-Thoracic Surgery, 31(3):430-437.

Abstract

Objective: We used the technique of peeling of myocardial aggregates, usually described as ‘fibres', to determine the spatial arrangement of the myocytes in the left ventricular wall of a healthy autopsied human heart. Methods: We digitised the left ventricular outer and inner boundaries, as well as the pathways in space, of almost 3000 aggregates harvested from the left ventricular myocardium. During the process of gradual peeling, we sought to identify the myocardial aggregates as uniformly as possible. Despite this, interpolation was necessary to complete the pattern so as to construct a unit vector field that represented the preferred direction of the myocardial aggregates throughout the entirety of the walls of the left ventricle of this individual human heart. Results: Apart from the overall systematic arrangement of the aggregates necessary to achieve physiologic ventricular contraction, we documented substantial local heterogeneities in the orientation of the myocardial aggregates. In particular, a significant proportion of aggregates was found to intrude obliquely with respect to the ventricular boundaries, with markedly heterogeneous distribution. Moreover, the distribution of the helical angle of the aggregates relative to the ventricular base varied notably throughout the left ventricular free walls and the septum. Within the generally quite uniform and continuous structure of the ventricular mass, we were, however, unable to identify any organised tracts or functional subunits such as a ‘helical ventricular band', nor did we find radial fibrous lamellas coursing across the ventricular wall. Conclusion: We suggest that the impact of local anatomical inhomogeneities, associated with gradients in regional contractile function on global ventricular dynamics, has been systematically underestimated in the past. Our analysis confirms furthermore the continuous nature of the myocardium associated with an overall gross organisation of the fibre direction field; however, there is no evidence of substructures compartmentalising the ventricles

Abstract

Objective: We used the technique of peeling of myocardial aggregates, usually described as ‘fibres', to determine the spatial arrangement of the myocytes in the left ventricular wall of a healthy autopsied human heart. Methods: We digitised the left ventricular outer and inner boundaries, as well as the pathways in space, of almost 3000 aggregates harvested from the left ventricular myocardium. During the process of gradual peeling, we sought to identify the myocardial aggregates as uniformly as possible. Despite this, interpolation was necessary to complete the pattern so as to construct a unit vector field that represented the preferred direction of the myocardial aggregates throughout the entirety of the walls of the left ventricle of this individual human heart. Results: Apart from the overall systematic arrangement of the aggregates necessary to achieve physiologic ventricular contraction, we documented substantial local heterogeneities in the orientation of the myocardial aggregates. In particular, a significant proportion of aggregates was found to intrude obliquely with respect to the ventricular boundaries, with markedly heterogeneous distribution. Moreover, the distribution of the helical angle of the aggregates relative to the ventricular base varied notably throughout the left ventricular free walls and the septum. Within the generally quite uniform and continuous structure of the ventricular mass, we were, however, unable to identify any organised tracts or functional subunits such as a ‘helical ventricular band', nor did we find radial fibrous lamellas coursing across the ventricular wall. Conclusion: We suggest that the impact of local anatomical inhomogeneities, associated with gradients in regional contractile function on global ventricular dynamics, has been systematically underestimated in the past. Our analysis confirms furthermore the continuous nature of the myocardium associated with an overall gross organisation of the fibre direction field; however, there is no evidence of substructures compartmentalising the ventricles

Statistics

Citations

Dimensions.ai Metrics
15 citations in Web of Science®
19 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

22 downloads since deposited on 02 Nov 2018
14 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:National licences > 142-005
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Health Sciences > Surgery
Health Sciences > Pulmonary and Respiratory Medicine
Health Sciences > Cardiology and Cardiovascular Medicine
Language:English
Date:1 March 2007
Deposited On:02 Nov 2018 15:15
Last Modified:31 Jul 2020 02:17
Publisher:Oxford University Press
ISSN:1010-7940
OA Status:Hybrid
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1016/j.ejcts.2006.11.040
Related URLs:https://www.swissbib.ch/Search/Results?lookfor=nationallicenceoxford101016jejcts200611040 (Library Catalogue)
PubMed ID:17194601

Download

Hybrid Open Access

Download PDF  'An analysis of the spatial arrangement of the myocardial aggregates making up the wall of the left ventricle'.
Preview
Content: Published Version
Language: English
Filetype: PDF (Nationallizenz 142-005)
Size: 1MB
View at publisher