Header

UZH-Logo

Maintenance Infos

The myocardium and its fibrous matrix working in concert as a spatially netted mesh: a critical review of the purported tertiary structure of the ventricular mass


Lunkenheimer, Paul P; Redmann, Klaus; Westermann, Philipp; Rothaus, Kay; Cryer, Colin W; Niederer, Peter; Anderson, Robert H (2006). The myocardium and its fibrous matrix working in concert as a spatially netted mesh: a critical review of the purported tertiary structure of the ventricular mass. European Journal of Cardio-Thoracic Surgery, 29:S41-S49.

Abstract

With the increasing interest now paid to volume reduction surgery, in which the cardiac surgeon is required to resect the ventricular myocardium to an extent unenvisaged in the previous century, it is imperative that we develop as precise knowledge as is possible of the basic structure of the ventricular myocardial mass and its functional correlates. This is the most important in the light of the adoption by some cardiac surgeons of an unvalidated model which hypothesises that the entire myocardial mass can be unravelled to produce one continuous band. It is our opinion that this model, and the phylogenetic and functional correlates derived from it, is incompatible with current concepts of cardiac structure and cardiodynamics. Furthermore, the proponents of the continuous myocardial band have made no effort to demonstrate perceived deficiencies with current concepts, nor have they performed any histological studies to validate their model. Clinical results using modifications of radius reduction surgery based on the concept of the continuous myocardial band show that the procedure essentially becomes ineffective. As we show in this review, if we understand the situation correctly, it was the erstwhile intention of the promoters of the continuous band to elucidate the basic mechanism of diastolic ventricular dilation. Their attempts, however, are doomed to failure, as is any attempt to conceptualise the myocardial mass on the basis of a tertiary structure, because of the underlying three-dimensional netting of the myocardial aggregates and the supporting fibrous tissue to form the myocardial syncytium. Thus, the ventricular myocardium is arranged in the form of a modified blood vessel rather than a skeletal muscle. If an analogy is required with skeletal muscle, then the ventricular myocardium possesses the freedom of motion, and the ability for shaping and conformational self-controlling that is better seen in the tongue. It is part of this ability that contributes to the rapid end-systolic ventricular dilation. Histologic investigations reveal that the fibrous content of the three-dimensional mesh is relatively inhomogeneous through the ventricular walls, particularly when the myocardium is diseased. The regional capacity to control systolic mural thickening, therefore, varies throughout the walls of the ventricular components. The existence of the spatially netted structure of the ventricular mass, therefore, must invalidate any attempt to conceptualise the ventricular myocardium as a tertiary arrangement of individual myocardial bands or tracts

Abstract

With the increasing interest now paid to volume reduction surgery, in which the cardiac surgeon is required to resect the ventricular myocardium to an extent unenvisaged in the previous century, it is imperative that we develop as precise knowledge as is possible of the basic structure of the ventricular myocardial mass and its functional correlates. This is the most important in the light of the adoption by some cardiac surgeons of an unvalidated model which hypothesises that the entire myocardial mass can be unravelled to produce one continuous band. It is our opinion that this model, and the phylogenetic and functional correlates derived from it, is incompatible with current concepts of cardiac structure and cardiodynamics. Furthermore, the proponents of the continuous myocardial band have made no effort to demonstrate perceived deficiencies with current concepts, nor have they performed any histological studies to validate their model. Clinical results using modifications of radius reduction surgery based on the concept of the continuous myocardial band show that the procedure essentially becomes ineffective. As we show in this review, if we understand the situation correctly, it was the erstwhile intention of the promoters of the continuous band to elucidate the basic mechanism of diastolic ventricular dilation. Their attempts, however, are doomed to failure, as is any attempt to conceptualise the myocardial mass on the basis of a tertiary structure, because of the underlying three-dimensional netting of the myocardial aggregates and the supporting fibrous tissue to form the myocardial syncytium. Thus, the ventricular myocardium is arranged in the form of a modified blood vessel rather than a skeletal muscle. If an analogy is required with skeletal muscle, then the ventricular myocardium possesses the freedom of motion, and the ability for shaping and conformational self-controlling that is better seen in the tongue. It is part of this ability that contributes to the rapid end-systolic ventricular dilation. Histologic investigations reveal that the fibrous content of the three-dimensional mesh is relatively inhomogeneous through the ventricular walls, particularly when the myocardium is diseased. The regional capacity to control systolic mural thickening, therefore, varies throughout the walls of the ventricular components. The existence of the spatially netted structure of the ventricular mass, therefore, must invalidate any attempt to conceptualise the ventricular myocardium as a tertiary arrangement of individual myocardial bands or tracts

Statistics

Citations

Dimensions.ai Metrics
34 citations in Web of Science®
40 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

13 downloads since deposited on 02 Nov 2018
5 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:National licences > 142-005
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Health Sciences > Surgery
Health Sciences > Pulmonary and Respiratory Medicine
Health Sciences > Cardiology and Cardiovascular Medicine
Language:English
Date:1 April 2006
Deposited On:02 Nov 2018 06:42
Last Modified:31 Jul 2020 02:17
Publisher:Oxford University Press
ISSN:1010-7940
OA Status:Hybrid
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1016/j.ejcts.2006.02.062
Related URLs:https://www.swissbib.ch/Search/Results?lookfor=nationallicenceoxford101016jejcts200602062 (Library Catalogue)

Download

Hybrid Open Access

Download PDF  'The myocardium and its fibrous matrix working in concert as a spatially netted mesh: a critical review of the purported tertiary structure of the ventricular mass'.
Preview
Content: Published Version
Language: English
Filetype: PDF (Nationallizenz 142-005)
Size: 2MB
View at publisher