Header

UZH-Logo

Maintenance Infos

Unequal interchromosomal rearrangements may result in elastin gene deletions causing the Williams-Beuren syndrome


Dutly, Fabrizio; Schinzel, Albert (1996). Unequal interchromosomal rearrangements may result in elastin gene deletions causing the Williams-Beuren syndrome. Human Molecular Genetics, 5(12):1893-1898.

Abstract

Williams-Beuren syndrome (WBS) is generally the consequence of an interstitial microdeletion at 7q11.23, which includes the elastin gene, thus causing hemizygosity at the elastin gene locus. The origin of the deletion has been reported by many authors to be maternal in ∼60% and paternal in 40% of cases. Segregation analysis of grandparental markers flanking the microdeletion region in WBS patients and their parents indicated that in the majority of cases a recombination between grandmaternal and grandpaternal chromosomes 7 at the site of the deletion had occurred during meiosis in the parent from whom the deleted chromosome stemmed. Thus, the majority of deletions were considered a consequence of unequal crossing-over between homologous chromosomes 7 (interchromosomal rearrangement) while in the remaining cases an intrachromosomal recombination (between the chromatids of one chromosome 7) may have occurred. These results suggest that the majority of interstitial deletions of the elastin gene region occur during meiosis, due to unbalanced recombination while a minority could occur before or during meiosis probably due to intrachromosomal rearrangements. The recurrence risk of the interchromosomal rearrangements for sibs of a proband with non-affected parents must be negligible, which fits well with the observation of sporadic occurrence of almost all cases of WBS

Abstract

Williams-Beuren syndrome (WBS) is generally the consequence of an interstitial microdeletion at 7q11.23, which includes the elastin gene, thus causing hemizygosity at the elastin gene locus. The origin of the deletion has been reported by many authors to be maternal in ∼60% and paternal in 40% of cases. Segregation analysis of grandparental markers flanking the microdeletion region in WBS patients and their parents indicated that in the majority of cases a recombination between grandmaternal and grandpaternal chromosomes 7 at the site of the deletion had occurred during meiosis in the parent from whom the deleted chromosome stemmed. Thus, the majority of deletions were considered a consequence of unequal crossing-over between homologous chromosomes 7 (interchromosomal rearrangement) while in the remaining cases an intrachromosomal recombination (between the chromatids of one chromosome 7) may have occurred. These results suggest that the majority of interstitial deletions of the elastin gene region occur during meiosis, due to unbalanced recombination while a minority could occur before or during meiosis probably due to intrachromosomal rearrangements. The recurrence risk of the interchromosomal rearrangements for sibs of a proband with non-affected parents must be negligible, which fits well with the observation of sporadic occurrence of almost all cases of WBS

Statistics

Citations

Dimensions.ai Metrics
77 citations in Web of Science®
90 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

30 downloads since deposited on 25 Sep 2018
3 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:National licences > 142-005
04 Faculty of Medicine > Institute of Medical Genetics
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Scopus Subject Areas:Life Sciences > Molecular Biology
Life Sciences > Genetics
Health Sciences > Genetics (clinical)
Language:English
Date:1 December 1996
Deposited On:25 Sep 2018 13:56
Last Modified:19 May 2024 01:43
Publisher:Oxford University Press
ISSN:0964-6906
OA Status:Hybrid
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1093/hmg/5.12.1893
PubMed ID:8968740
Other Identification Number:Corpus ID: 44319228
  • Content: Published Version
  • Language: English
  • Description: Nationallizenz 142-005