Header

UZH-Logo

Maintenance Infos

Quantitative near-infrared spectroscopy of cervical dysplasia in vivo


Hornung, R; Pham, T H; Keefe, K A; Berns, M W; Tadir, Y; Tromberg, B J (1999). Quantitative near-infrared spectroscopy of cervical dysplasia in vivo. Human Reproduction, 14(11):2908-2916.

Abstract

The aims of this study were: (i) to quantify near-infrared optical properties of normal cervical tissues and high-grade squamous intra-epithelial lesions (H-SIL); (ii) to assess the feasibility of differentiating normal cervical tissues from H-SIL on the basis of these properties; and (iii) to determine how cervical tissue optical properties change following photodynamic therapy (PDT) of H-SIL in vivo. Using the frequency domain photon migration technique, non-invasive measurements of normal and dysplastic ecto-cervical tissue optical properties, i.e. absorption (μa) and effective scattering coefficients, and physiological parameters, i.e. tissue water and haemoglobin concentration, percentage oxygen saturation (%SO2), were performed on 10 patients scheduled for PDT of histologically-proven H-SIL. Cervix absorption and effective scattering parameters were up to 15% lower in H-SIL sites compared with normal cervical tissue for all wavelengths studied (674, 811, 849, 956 nm). Following PDT, all μa values increased significantly, due to elevated tissue blood and water content associated with PDT-induced hyperaemia and oedema. Tissue total haemoglobin concentration ([TotHb]) and arterio-venous oxygen saturation measured in H-SIL sites were lower than normal sites ([TotHb]: 88.6 ± 35.8 μmol/l versus 124.7 ± 22.6 μmol/l; %SO2: 76.5 ± 14.7% versus 84.9 ± 3.4%)

Abstract

The aims of this study were: (i) to quantify near-infrared optical properties of normal cervical tissues and high-grade squamous intra-epithelial lesions (H-SIL); (ii) to assess the feasibility of differentiating normal cervical tissues from H-SIL on the basis of these properties; and (iii) to determine how cervical tissue optical properties change following photodynamic therapy (PDT) of H-SIL in vivo. Using the frequency domain photon migration technique, non-invasive measurements of normal and dysplastic ecto-cervical tissue optical properties, i.e. absorption (μa) and effective scattering coefficients, and physiological parameters, i.e. tissue water and haemoglobin concentration, percentage oxygen saturation (%SO2), were performed on 10 patients scheduled for PDT of histologically-proven H-SIL. Cervix absorption and effective scattering parameters were up to 15% lower in H-SIL sites compared with normal cervical tissue for all wavelengths studied (674, 811, 849, 956 nm). Following PDT, all μa values increased significantly, due to elevated tissue blood and water content associated with PDT-induced hyperaemia and oedema. Tissue total haemoglobin concentration ([TotHb]) and arterio-venous oxygen saturation measured in H-SIL sites were lower than normal sites ([TotHb]: 88.6 ± 35.8 μmol/l versus 124.7 ± 22.6 μmol/l; %SO2: 76.5 ± 14.7% versus 84.9 ± 3.4%)

Statistics

Citations

Dimensions.ai Metrics
73 citations in Web of Science®
83 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

6 downloads since deposited on 25 Sep 2018
6 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:National licences > 142-005
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:1 November 1999
Deposited On:25 Sep 2018 13:53
Last Modified:24 Nov 2018 03:01
Publisher:Oxford University Press
ISSN:0268-1161
OA Status:Green
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1093/humrep/14.11.2908
Related URLs:https://www.swissbib.ch/Search/Results?lookfor=nationallicenceoxford101093humrep14112908 (Library Catalogue)

Download

Download PDF  'Quantitative near-infrared spectroscopy of cervical dysplasia in vivo'.
Preview
Content: Published Version
Language: English
Filetype: PDF (Nationallizenz 142-005)
Size: 10MB
View at publisher