Header

UZH-Logo

Maintenance Infos

Myocardial ischaemia in children with isolated ventricular non-compaction


Junga, G (1999). Myocardial ischaemia in children with isolated ventricular non-compaction. European Heart Journal, 20(12):910-916.

Abstract

Aims Isolated ventricular non-compaction is a rare congenital cardiomyopathy with a high morbidity and mortality due to malignant arrhythmias and pump failure. Areas affected by non-compaction are characterized by increased trabecularization and deep inter-trabecular spaces. We hypothesized perfusion defects in these areas and performed positron emission tomography to evaluate the myocardial perfusion in non-compacted areas. Methods and Results Five children (age 10-14 years) with isolated ventricular non-compaction underwent positron emission tomography using N-13-ammonia as flow marker and intravenous dipyridamole for stress testing. Myocardial blood flow was quantified using the positron emission tomography time-activity curves in non-compacted areas and normal myocardium, which were diagnosed by echocardiography, magnetic resonance imaging, and angiography. Coronary angiography, performed in two children with extensive forms of left ventricular non-compaction, demonstrated normal coronary arteries. Myocardial blood flow measurements at rest and after dipyridamole application demonstrated 16-33% and 32-57% perfusion impairment, respectively, in non-compacted areas compared to normal myocardium. Areas of restricted myocardial perfusion corresponded well to the non-compacted areas, defined echographically and by magnetic resonance imaging. Conclusion Positron emission tomography demonstrates restricted myocardial perfusion and decreased flow reserve in areas of ventricular non-compaction in children. The myocardial perfusion defects in non-compacted areas may be the cause of myocardial damage and possibly form the basis of arrhythmias and pump failure

Abstract

Aims Isolated ventricular non-compaction is a rare congenital cardiomyopathy with a high morbidity and mortality due to malignant arrhythmias and pump failure. Areas affected by non-compaction are characterized by increased trabecularization and deep inter-trabecular spaces. We hypothesized perfusion defects in these areas and performed positron emission tomography to evaluate the myocardial perfusion in non-compacted areas. Methods and Results Five children (age 10-14 years) with isolated ventricular non-compaction underwent positron emission tomography using N-13-ammonia as flow marker and intravenous dipyridamole for stress testing. Myocardial blood flow was quantified using the positron emission tomography time-activity curves in non-compacted areas and normal myocardium, which were diagnosed by echocardiography, magnetic resonance imaging, and angiography. Coronary angiography, performed in two children with extensive forms of left ventricular non-compaction, demonstrated normal coronary arteries. Myocardial blood flow measurements at rest and after dipyridamole application demonstrated 16-33% and 32-57% perfusion impairment, respectively, in non-compacted areas compared to normal myocardium. Areas of restricted myocardial perfusion corresponded well to the non-compacted areas, defined echographically and by magnetic resonance imaging. Conclusion Positron emission tomography demonstrates restricted myocardial perfusion and decreased flow reserve in areas of ventricular non-compaction in children. The myocardial perfusion defects in non-compacted areas may be the cause of myocardial damage and possibly form the basis of arrhythmias and pump failure

Statistics

Citations

Dimensions.ai Metrics
133 citations in Web of Science®
150 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

48 downloads since deposited on 25 Sep 2018
8 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:National licences > 142-005
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Scopus Subject Areas:Health Sciences > Cardiology and Cardiovascular Medicine
Language:English
Date:1 June 1999
Deposited On:25 Sep 2018 14:12
Last Modified:28 Nov 2023 08:16
Publisher:Oxford University Press
ISSN:0195-668X
OA Status:Hybrid
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1053/euhj.1998.1398
  • Content: Published Version
  • Language: English
  • Description: Nationallizenz 142-005