Header

UZH-Logo

Maintenance Infos

Molar substitution and C2/C6 ratio of hydroxyethyl starch: influence on blood coagulation


von Roten, I; Madjdpour, C; Frascarolo, P; Burmeister, M-A; Fisch, A; Schramm, S; Bombeli, T; Spahn, D R (2006). Molar substitution and C2/C6 ratio of hydroxyethyl starch: influence on blood coagulation. British Journal of Anaesthesia, 96(4):455-463.

Abstract

Background. Development of hydroxyethyl starches (HES) with a low impact on blood coagulation but a long intravascular persistence is of clinical interest. A previous in vitro study showed that low substituted high molecular weight HES does not compromise blood coagulation more than medium molecular weight HES. In the present study we assessed the individual effects on blood coagulation of molar substitution and C2/C6 ratio of a high molecular weight HES. Methods. Blood was obtained from 30 healthy patients undergoing elective surgery and mixed with six high molecular weight (700 kDa) HES solutions differing in their molar substitution (0.42 and 0.51) and C2/C6 ratio (2.7, 7 and 14) to achieve 20, 40 and 60% dilution. Blood coagulation was assessed by Thrombelastograph® analysis (TEG) and plasma coagulation tests.Data were compared using a three-way analysis of variance model with repeated measures on the three factors. Results. Higher molar substitution compromised blood coagulation most (for all TEG parameters, P<0.05). The lowest C2/C6 ratio was associated with the lowest effect on blood coagulation; r (P<0.001), angle α (P=0.003) and coagulation index (P<0.001). No effect on k and maximum amplitude was observed (P for both >0.50). The higher molar substitution was associated with a lesser increase in PT (P=0.007) and a greater decrease in factor VIII (P=0.010). PTT, functional and antigenic von Willebrand factors were not significantly influenced by molar substitution (P for all >0.20). No significant differences between solutions with the same molar substitution but different C2/C6 ratios were found in plasma coagulation parameters (P for all >0.05). Conclusions. TEG analysis indicates that high molecular HES with a molar substitution of 0.42 and a C2/C6 ratio of 2.7 has the lowest effect on in vitro human blood coagulation

Abstract

Background. Development of hydroxyethyl starches (HES) with a low impact on blood coagulation but a long intravascular persistence is of clinical interest. A previous in vitro study showed that low substituted high molecular weight HES does not compromise blood coagulation more than medium molecular weight HES. In the present study we assessed the individual effects on blood coagulation of molar substitution and C2/C6 ratio of a high molecular weight HES. Methods. Blood was obtained from 30 healthy patients undergoing elective surgery and mixed with six high molecular weight (700 kDa) HES solutions differing in their molar substitution (0.42 and 0.51) and C2/C6 ratio (2.7, 7 and 14) to achieve 20, 40 and 60% dilution. Blood coagulation was assessed by Thrombelastograph® analysis (TEG) and plasma coagulation tests.Data were compared using a three-way analysis of variance model with repeated measures on the three factors. Results. Higher molar substitution compromised blood coagulation most (for all TEG parameters, P<0.05). The lowest C2/C6 ratio was associated with the lowest effect on blood coagulation; r (P<0.001), angle α (P=0.003) and coagulation index (P<0.001). No effect on k and maximum amplitude was observed (P for both >0.50). The higher molar substitution was associated with a lesser increase in PT (P=0.007) and a greater decrease in factor VIII (P=0.010). PTT, functional and antigenic von Willebrand factors were not significantly influenced by molar substitution (P for all >0.20). No significant differences between solutions with the same molar substitution but different C2/C6 ratios were found in plasma coagulation parameters (P for all >0.05). Conclusions. TEG analysis indicates that high molecular HES with a molar substitution of 0.42 and a C2/C6 ratio of 2.7 has the lowest effect on in vitro human blood coagulation

Statistics

Citations

Dimensions.ai Metrics
30 citations in Web of Science®
35 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

27 downloads since deposited on 02 Nov 2018
10 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:National licences > 142-005
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Health Sciences > Anesthesiology and Pain Medicine
Language:English
Date:1 April 2006
Deposited On:02 Nov 2018 06:51
Last Modified:15 Apr 2021 14:50
Publisher:Elsevier
ISSN:0007-0912
OA Status:Hybrid
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1093/bja/ael019

Download

Hybrid Open Access

Download PDF  'Molar substitution and C2/C6 ratio of hydroxyethyl starch: influence on blood coagulation'.
Preview
Content: Published Version
Language: English
Filetype: PDF (Nationallizenz 142-005)
Size: 143kB
View at publisher