Header

UZH-Logo

Maintenance Infos

The signature of dark energy on the local Hubble flow


Macciò, Andrea V; Governato, Fabio; Horellou, Cathy (2005). The signature of dark energy on the local Hubble flow. Monthly Notices of the Royal Astronomical Society, 359(3):941-948.

Abstract

Using N-body simulations of flat, dark energy-dominated cosmologies, we show that galaxies around simulated binary systems resembling the Local Group (LG) have low peculiar velocities, in good agreement with observational data. We have compared results for LG-like systems selected from large, high-resolution simulations of three cosmologies: a ΛCDM model, a ΛWDM model with a 2-keV warm dark matter candidate, and a quintessence (QCDM) model with an equation-of-state parameter w=−0.6. The Hubble flow is significantly colder around LGs selected in a flat, Λ-dominated cosmology than around LGs in open or critical models, showing that a dark energy component manifests itself on the scales of nearby galaxies, cooling galaxy peculiar motions. Flows in the ΛWDM and QCDM models are marginally colder than in the ΛCDM one. The results of our simulations have been compared to existing data and to a new data set of 28 nearby galaxies with robust distance measures (Cepheids and surface brightness fluctuations). The measured line-of-sight velocity dispersion is given by σH= (88 ± 20 km s−1) × (R/7 Mpc). The best agreement with observations is found for LGs selected in the ΛCDM cosmology in environments with −0.1 < δρ/ρ < 0.6 on scales of 7 Mpc, in agreement with existing observational estimates on the local matter density. These results provide new, independent evidence for the presence of dark energy on scales of a few megaparsecs, corroborating the evidence gathered from observations of distant objects and the early Universe

Abstract

Using N-body simulations of flat, dark energy-dominated cosmologies, we show that galaxies around simulated binary systems resembling the Local Group (LG) have low peculiar velocities, in good agreement with observational data. We have compared results for LG-like systems selected from large, high-resolution simulations of three cosmologies: a ΛCDM model, a ΛWDM model with a 2-keV warm dark matter candidate, and a quintessence (QCDM) model with an equation-of-state parameter w=−0.6. The Hubble flow is significantly colder around LGs selected in a flat, Λ-dominated cosmology than around LGs in open or critical models, showing that a dark energy component manifests itself on the scales of nearby galaxies, cooling galaxy peculiar motions. Flows in the ΛWDM and QCDM models are marginally colder than in the ΛCDM one. The results of our simulations have been compared to existing data and to a new data set of 28 nearby galaxies with robust distance measures (Cepheids and surface brightness fluctuations). The measured line-of-sight velocity dispersion is given by σH= (88 ± 20 km s−1) × (R/7 Mpc). The best agreement with observations is found for LGs selected in the ΛCDM cosmology in environments with −0.1 < δρ/ρ < 0.6 on scales of 7 Mpc, in agreement with existing observational estimates on the local matter density. These results provide new, independent evidence for the presence of dark energy on scales of a few megaparsecs, corroborating the evidence gathered from observations of distant objects and the early Universe

Statistics

Citations

Dimensions.ai Metrics
42 citations in Web of Science®
41 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

16 downloads since deposited on 23 Oct 2018
5 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:National licences > 142-005
Dewey Decimal Classification:530 Physics
Scopus Subject Areas:Physical Sciences > Astronomy and Astrophysics
Physical Sciences > Space and Planetary Science
Language:English
Date:1 May 2005
Deposited On:23 Oct 2018 12:58
Last Modified:15 Apr 2021 14:50
Publisher:Oxford University Press
ISSN:0035-8711
OA Status:Hybrid
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1111/j.1365-2966.2005.08947.x

Download

Hybrid Open Access

Download PDF  'The signature of dark energy on the local Hubble flow'.
Preview
Content: Published Version
Language: English
Filetype: PDF (Nationallizenz 142-005)
Size: 182kB
View at publisher