Abstract
We consider the question: is every compact set in a Banach space X contained in the closed unit range of a compact (or even approximable) operator on X? We give large classes of spaces where the question has an affirmative answer, but observe that it has a negative answer, in general, for approximable operators. We further construct a Banach space failing the bounded compact approximation property, though all of its duals have the metric compact approximation property.