Header

UZH-Logo

Maintenance Infos

β-Deuteration of N-nitrosoethylmethylamine causes a shift in DNA methylation from rat liver to esophagus


von Hofe, Eric; Schmerold, Ivo; Nims, Raymond W; Keefer, Larry K; Reist, Elmer J; Kleihues, Paul (1991). β-Deuteration of N-nitrosoethylmethylamine causes a shift in DNA methylation from rat liver to esophagus. Carcinogenesis, 12(4):545-549.

Abstract

While N-nitrosoethylmethylamine (NEMA) is carcinogenic primarily for the liver, its β-trideuterated derivative, N-nitroso([2-D3]ethyl)methylamine (NEMA-d3), also produces a high incidence of tumors in the esophagus. To determine whether this shift in organ specificity is associated with an altered pattern of DNA alkylation, [methyl-14C]- and [1-ethyl-14C]-labeled NEMA-d3 were administered to adult male Fischer 344 rats as a single i.p. dose (0.05 mmol/kg; 4 h survival). Levels of methylated and ethylated purines in the DNA of various organs were determined by radiochromatography on Sephasorb-HP columns. When compared to previous data using undeuterated NEMA, 7-niethylguanine levelswerefoundtobereducedby ∽30%inliverandkldney, but were 160% greater in esophagus. This resulted in a decrease in the 7-methylguanine ratio for liver/esophagus from 109 to 29. O6-Methlguanine was diminished in liver and kidney, but levels in lung and esophagus were too low for quantitative detection. Similarly, deuteration led to an 18% decrease of 7-ethylguanine In hepatic DNA. The observed increase in esophageal DNA methylation correlates with the increased carcinogenicity of NEMA-d3 relative to undeuterated NEMA in that organ. Since pharmacokinetic studies have shown that β-trideuteration of NEMA does not alter its bioavailability, the data suggest that the observed shift in target organ results from isotopically-induced changes in the balance among competing metabolic pathways in different rat tissues

Abstract

While N-nitrosoethylmethylamine (NEMA) is carcinogenic primarily for the liver, its β-trideuterated derivative, N-nitroso([2-D3]ethyl)methylamine (NEMA-d3), also produces a high incidence of tumors in the esophagus. To determine whether this shift in organ specificity is associated with an altered pattern of DNA alkylation, [methyl-14C]- and [1-ethyl-14C]-labeled NEMA-d3 were administered to adult male Fischer 344 rats as a single i.p. dose (0.05 mmol/kg; 4 h survival). Levels of methylated and ethylated purines in the DNA of various organs were determined by radiochromatography on Sephasorb-HP columns. When compared to previous data using undeuterated NEMA, 7-niethylguanine levelswerefoundtobereducedby ∽30%inliverandkldney, but were 160% greater in esophagus. This resulted in a decrease in the 7-methylguanine ratio for liver/esophagus from 109 to 29. O6-Methlguanine was diminished in liver and kidney, but levels in lung and esophagus were too low for quantitative detection. Similarly, deuteration led to an 18% decrease of 7-ethylguanine In hepatic DNA. The observed increase in esophageal DNA methylation correlates with the increased carcinogenicity of NEMA-d3 relative to undeuterated NEMA in that organ. Since pharmacokinetic studies have shown that β-trideuteration of NEMA does not alter its bioavailability, the data suggest that the observed shift in target organ results from isotopically-induced changes in the balance among competing metabolic pathways in different rat tissues

Statistics

Citations

Dimensions.ai Metrics
2 citations in Web of Science®
2 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

9 downloads since deposited on 16 Oct 2018
9 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:National licences > 142-005
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:1 January 1991
Deposited On:16 Oct 2018 15:14
Last Modified:24 Nov 2018 03:06
Publisher:Oxford University Press
ISSN:0143-3334
OA Status:Green
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1093/carcin/12.4.545
Related URLs:https://www.swissbib.ch/Search/Results?lookfor=nationallicenceoxford101093carcin124545 (Library Catalogue)

Download

Download PDF  'β-Deuteration of N-nitrosoethylmethylamine causes a shift in DNA methylation from rat liver to esophagus'.
Preview
Content: Published Version
Language: English
Filetype: PDF (Nationallizenz 142-005)
Size: 489kB
View at publisher