Header

UZH-Logo

Maintenance Infos

Carbohydrate Metabolism In Drought-stressed Leaves Of Pigeonpea (cajanus Cajan)


Keller, F; Ludlow, M M (1993). Carbohydrate Metabolism In Drought-stressed Leaves Of Pigeonpea (cajanus Cajan). Journal of Experimental Botany, 44(8):1351-1359.

Abstract

Pigeonpea is a tropical grain-legume, which is highly dehydration tolerant. The effect of drought stress on the carbohydrate metabolism in mature pigeonpea leaves was investigated by withholding water from plants grown in very large pots (50 kg of soil). The most striking feature of drought-stressed plants was the pronounced accumulation of D-pinitol (1D-3-methyl-chiro-inositol), which increased from 14 to 85 mg g−1 dry weight during a 27 d stress period. Concomitantly, the levels of starch, sucrose and the pinitol precursors myo-inositol and ononitol all decreased rapidly to zero or near-zero in response to drought. The levels of glucose and fructose increased moderately. Drought stress induced a pronounced increase of the activities of enzymes hydrolysing soluble starch (amylases) and sucrose (invertase and sucrose synthase). The two anabolic enzymes sucrose phosphate synthase (sucrose synthetic pathway) and myo-inositol methyl transferase (pinitol synthetic pathway) also showed an increase of activity during stress. These results indicate that pinitol accumulated in pigeonpea leaves, because the carbon flux was diverted from starch and sucrose into polyols

Abstract

Pigeonpea is a tropical grain-legume, which is highly dehydration tolerant. The effect of drought stress on the carbohydrate metabolism in mature pigeonpea leaves was investigated by withholding water from plants grown in very large pots (50 kg of soil). The most striking feature of drought-stressed plants was the pronounced accumulation of D-pinitol (1D-3-methyl-chiro-inositol), which increased from 14 to 85 mg g−1 dry weight during a 27 d stress period. Concomitantly, the levels of starch, sucrose and the pinitol precursors myo-inositol and ononitol all decreased rapidly to zero or near-zero in response to drought. The levels of glucose and fructose increased moderately. Drought stress induced a pronounced increase of the activities of enzymes hydrolysing soluble starch (amylases) and sucrose (invertase and sucrose synthase). The two anabolic enzymes sucrose phosphate synthase (sucrose synthetic pathway) and myo-inositol methyl transferase (pinitol synthetic pathway) also showed an increase of activity during stress. These results indicate that pinitol accumulated in pigeonpea leaves, because the carbon flux was diverted from starch and sucrose into polyols

Statistics

Citations

Dimensions.ai Metrics
122 citations in Web of Science®
129 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

40 downloads since deposited on 16 Oct 2018
26 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:National licences > 142-005
Dewey Decimal Classification:Unspecified
Scopus Subject Areas:Life Sciences > Physiology
Life Sciences > Plant Science
Language:English
Date:1 January 1993
Deposited On:16 Oct 2018 13:41
Last Modified:15 Apr 2021 14:51
Publisher:Oxford University Press
ISSN:0022-0957
OA Status:Green
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1093/jxb/44.8.1351

Download

Green Open Access

Download PDF  'Carbohydrate Metabolism In Drought-stressed Leaves Of Pigeonpea (cajanus Cajan)'.
Preview
Content: Published Version
Language: English
Filetype: PDF (Nationallizenz 142-005)
Size: 791kB
View at publisher