Header

UZH-Logo

Maintenance Infos

PET attenuation coefficients from CT images: experimental evaluation of the transformation of CT into PET 511-keV attenuation coefficients


Burger, C; Goerres, G; Schoenes, S; Buck, A; Lonn, A; von Schulthess, G (2002). PET attenuation coefficients from CT images: experimental evaluation of the transformation of CT into PET 511-keV attenuation coefficients. European Journal of Nuclear Medicine and Molecular Imaging, 29(7):922-927.

Abstract

The CT data acquired in combined PET/CT studies provide a fast and essentially noiseless source for the correction of photon attenuation in PET emission data. To this end, the CT values relating to attenuation of photons in the range of 40-140keV must be transformed into linear attenuation coefficients at the PET energy of 511keV. As attenuation depends on photon energy and the absorbing material, an accurate theoretical relation cannot be devised. The transformation implemented in the Discovery LS PET/CT scanner (GE Medical Systems, Milwaukee, Wis.) uses a bilinear function based on the attenuation of water and cortical bone at the CT and PET energies. The purpose of this study was to compare this transformation with experimental CT values and corresponding PET attenuation coefficients. In 14 patients, quantitative PET attenuation maps were calculated from germanium-68 transmission scans, and resolution-matched CT images were generated. A total of 114 volumes of interest were defined and the average PET attenuation coefficients and CT values measured. From the CT values the predicted PET attenuation coefficients were calculated using the bilinear transformation. When the transformation was based on the narrow-beam attenuation coefficient of water at 511keV (0.096cm-1), the predicted attenuation coefficients were higher in soft tissue than the measured values. This bias was reduced by replacing 0.096cm-1 in the transformation by the linear attenuation coefficient of 0.093cm-1 obtained from germanium-68 transmission scans. An analysis of the corrected emission activities shows that the resulting transformation is essentially equivalent to the transmission-based attenuation correction for human tissue. For non-human material, however, it may assign inaccurate attenuation coefficients which will also affect the correction in neighbouring tissue

Abstract

The CT data acquired in combined PET/CT studies provide a fast and essentially noiseless source for the correction of photon attenuation in PET emission data. To this end, the CT values relating to attenuation of photons in the range of 40-140keV must be transformed into linear attenuation coefficients at the PET energy of 511keV. As attenuation depends on photon energy and the absorbing material, an accurate theoretical relation cannot be devised. The transformation implemented in the Discovery LS PET/CT scanner (GE Medical Systems, Milwaukee, Wis.) uses a bilinear function based on the attenuation of water and cortical bone at the CT and PET energies. The purpose of this study was to compare this transformation with experimental CT values and corresponding PET attenuation coefficients. In 14 patients, quantitative PET attenuation maps were calculated from germanium-68 transmission scans, and resolution-matched CT images were generated. A total of 114 volumes of interest were defined and the average PET attenuation coefficients and CT values measured. From the CT values the predicted PET attenuation coefficients were calculated using the bilinear transformation. When the transformation was based on the narrow-beam attenuation coefficient of water at 511keV (0.096cm-1), the predicted attenuation coefficients were higher in soft tissue than the measured values. This bias was reduced by replacing 0.096cm-1 in the transformation by the linear attenuation coefficient of 0.093cm-1 obtained from germanium-68 transmission scans. An analysis of the corrected emission activities shows that the resulting transformation is essentially equivalent to the transmission-based attenuation correction for human tissue. For non-human material, however, it may assign inaccurate attenuation coefficients which will also affect the correction in neighbouring tissue

Statistics

Citations

Dimensions.ai Metrics
287 citations in Web of Science®
295 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

60 downloads since deposited on 09 Oct 2018
48 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:National licences > 142-005
Dewey Decimal Classification:610 Medicine & health
Scopus Subject Areas:Health Sciences > Radiology, Nuclear Medicine and Imaging
Language:English
Date:1 July 2002
Deposited On:09 Oct 2018 12:34
Last Modified:31 Jul 2020 02:34
Publisher:Springer
ISSN:1619-7070
OA Status:Green
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1007/s00259-002-0796-3
Related URLs:https://www.swissbib.ch/Search/Results?lookfor=nationallicencespringer101007s0025900207963 (Library Catalogue)

Download

Green Open Access

Download PDF  'PET attenuation coefficients from CT images: experimental evaluation of the transformation of CT into PET 511-keV attenuation coefficients'.
Preview
Content: Published Version
Language: English
Filetype: PDF (Nationallizenz 142-005)
Size: 131kB
View at publisher