Header

UZH-Logo

Maintenance Infos

Tetrahydrobiopterin restores impaired coronary microvascular dysfunction in hypercholesterolaemia


Wyss, Christophe A; Koepfli, Pascal; Namdar, Mehdi; Siegrist, Patrick T; Luscher, Thomas F; Camici, Paolo G; Kaufmann, Philipp A (2005). Tetrahydrobiopterin restores impaired coronary microvascular dysfunction in hypercholesterolaemia. European Journal of Nuclear Medicine and Molecular Imaging, 32(1):84-91.

Abstract

Purpose: Tetrahydrobiopterin (BH4) is an essential co-factor for the synthesis of nitric oxide (NO), and BH4 deficiency may cause impaired NO synthase (NOS) activity. We studied whether BH4 deficiency contributes to the coronary microcirculatory dysfunction observed in patients with hypercholesterolaemia. Methods: Myocardial blood flow (MBF; mlmin−1g−1) was measured at rest, during adenosine-induced (140μgkg−1min−1 over 7min) hyperaemia (mainly non-endothelium dependent) and immediately after supine bicycle exercise (endothelium-dependent) stress in ten healthy volunteers and in nine hypercholesterolaemic subjects using 15O-labelled water and positron emission tomography. Measurements were repeated 60min later, after intravenous infusion of BH4 (10mgkg−1 body weight over 30min). Adenosine-induced hyperaemic MBF is considered to represent (near) maximal flow. Flow reserve utilisation was calculated as the ratio of exercise-induced to adenosine-induced hyperaemic MBF and expressed as percent to indicate how much of the maximal (adenosine-induced) hyperaemia can be achieved by bicycle stress. Results: BH4 increased exercise-induced hyperaemia in controls (2.96±0.58vs 3.41±0.73mlmin−1g−1, p<0.05) and hypercholesterolaemic subjects (2.47±0.78vs 2.70±0.72mlmin−1g−1, p<0.01) but had no influence on MBF at rest or during adenosine-induced hyperaemia in controls (4.52±1.10vs 4.85±0.45mlmin−1g−1, p=NS) or hypercholesterolaemic subjects (4.86±1.18vs 4.53±0.93mlmin−1g−1, p=NS). Flow reserve utilisation remained unchanged in controls (70±17% vs 71±19%, p=NS) but increased significantly in hypercholesterolaemic subjects (53±15% vs 66±14%, p<0.05). Conclusion: BH4 restores flow reserve utilisation of the coronary microcirculation in hypercholesterolaemic subjects, suggesting that BH4 deficiency may contribute to coronary microcirculatory dysfunction in hypercholesterolaemia

Abstract

Purpose: Tetrahydrobiopterin (BH4) is an essential co-factor for the synthesis of nitric oxide (NO), and BH4 deficiency may cause impaired NO synthase (NOS) activity. We studied whether BH4 deficiency contributes to the coronary microcirculatory dysfunction observed in patients with hypercholesterolaemia. Methods: Myocardial blood flow (MBF; mlmin−1g−1) was measured at rest, during adenosine-induced (140μgkg−1min−1 over 7min) hyperaemia (mainly non-endothelium dependent) and immediately after supine bicycle exercise (endothelium-dependent) stress in ten healthy volunteers and in nine hypercholesterolaemic subjects using 15O-labelled water and positron emission tomography. Measurements were repeated 60min later, after intravenous infusion of BH4 (10mgkg−1 body weight over 30min). Adenosine-induced hyperaemic MBF is considered to represent (near) maximal flow. Flow reserve utilisation was calculated as the ratio of exercise-induced to adenosine-induced hyperaemic MBF and expressed as percent to indicate how much of the maximal (adenosine-induced) hyperaemia can be achieved by bicycle stress. Results: BH4 increased exercise-induced hyperaemia in controls (2.96±0.58vs 3.41±0.73mlmin−1g−1, p<0.05) and hypercholesterolaemic subjects (2.47±0.78vs 2.70±0.72mlmin−1g−1, p<0.01) but had no influence on MBF at rest or during adenosine-induced hyperaemia in controls (4.52±1.10vs 4.85±0.45mlmin−1g−1, p=NS) or hypercholesterolaemic subjects (4.86±1.18vs 4.53±0.93mlmin−1g−1, p=NS). Flow reserve utilisation remained unchanged in controls (70±17% vs 71±19%, p=NS) but increased significantly in hypercholesterolaemic subjects (53±15% vs 66±14%, p<0.05). Conclusion: BH4 restores flow reserve utilisation of the coronary microcirculation in hypercholesterolaemic subjects, suggesting that BH4 deficiency may contribute to coronary microcirculatory dysfunction in hypercholesterolaemia

Statistics

Citations

Dimensions.ai Metrics
32 citations in Web of Science®
35 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 24 Oct 2018
1 download since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:National licences > 142-005
Dewey Decimal Classification:610 Medicine & health
Uncontrolled Keywords:Radiology Nuclear Medicine and imaging, General Medicine
Language:English
Date:1 January 2005
Deposited On:24 Oct 2018 12:33
Last Modified:25 Oct 2018 17:38
Publisher:Springer
ISSN:1619-7070
OA Status:Green
Publisher DOI:https://doi.org/10.1007/s00259-004-1621-y
Related URLs:https://www.swissbib.ch/Search/Results?lookfor=nationallicencespringer101007s002590041621y (Library Catalogue)
https://www.zora.uzh.ch/id/eprint/156650/

Download

Download PDF  'Tetrahydrobiopterin restores impaired coronary microvascular dysfunction in hypercholesterolaemia'.
Preview
Content: Published Version
Language: English
Filetype: PDF (Nationallizenz 142-005)
Size: 197kB
View at publisher