Abstract
An analysis of nuclear spin-lattice relaxation data in the normal state of cuprates that appropriately accounts for the highly anisotropic structures shows no contrasting temperature dependence of the Cu, O, and Y relaxations, which suggests that all nuclei relax by the same mechanism of the spin liquid. To investigate the temperature dependence of this mechanism, the model of fluctuating fields is used in which the rates are expressed in terms of hyperfine interaction energies and an effective correlation time τ eff characterizing the dynamics of the spin fluid. The former contain the effects of the antiferromagnetic static spin correlations, which cause the hyperfine field constants to be added more coherently at low temperature but incoherently at high temperature. At low temperatures, τ eff grows linearly with temperature as in ordinary metals. At high temperatures, however, the nuclear spin-lattice relaxation rates in various cuprates unequivocally reflect local moment features. This behavior is similar to that observed for the magnetic transition metals Fe, Co, and Ni, where also some properties show a cross-over from an itinerant behavior of delocalized electrons at low to that of localized moments at high temperatures