Header

UZH-Logo

Maintenance Infos

Jupiter’s atmospheric jet streams extend thousands of kilometres deep


Kaspi, Y; Galanti, E; Hubbard, W B; Stevenson, D J; Bolton, S J; Iess, L; Guillot, T; Bloxham, J; Connerney, J E P; Cao, H; Durante, D; Folkner, W M; Helled, R; Ingersoll, A P; Levin, S M; Lunine, J I; Miguel, Y; Militzer, B; Parisi, M; Wahl, S M (2018). Jupiter’s atmospheric jet streams extend thousands of kilometres deep. Nature, 555(7695):223-226.

Abstract

The depth to which Jupiter’s observed east–west jet streams extend has been a long-standing question1,2. Resolving this puzzle has been a primary goal for the Juno spacecraft3,4, which has been in orbit around the gas giant since July 2016. Juno’s gravitational measurements have revealed that Jupiter’s gravitational field is north–south asymmetric5, which is a signature of the planet’s atmospheric and interior flows6. Here we report that the measured odd gravitational harmonics J3, J5, J7 and J9 indicate that the observed jet streams, as they appear at the cloud level, extend down to depths of thousands of kilometres beneath the cloud level, probably to the region of magnetic dissipation at a depth of about 3,000  kilometres7,8. By inverting the measured gravity values into a wind field9, we calculate the most likely vertical profile of the deep atmospheric and interior flow, and the latitudinal dependence of its depth. Furthermore, the even gravity harmonics J8 and J10 resulting from this flow profile also match the measurements, when taking into account the contribution of the interior structure10. These results indicate that the mass of the dynamical atmosphere is about one per cent of Jupiter’s total mass.

Abstract

The depth to which Jupiter’s observed east–west jet streams extend has been a long-standing question1,2. Resolving this puzzle has been a primary goal for the Juno spacecraft3,4, which has been in orbit around the gas giant since July 2016. Juno’s gravitational measurements have revealed that Jupiter’s gravitational field is north–south asymmetric5, which is a signature of the planet’s atmospheric and interior flows6. Here we report that the measured odd gravitational harmonics J3, J5, J7 and J9 indicate that the observed jet streams, as they appear at the cloud level, extend down to depths of thousands of kilometres beneath the cloud level, probably to the region of magnetic dissipation at a depth of about 3,000  kilometres7,8. By inverting the measured gravity values into a wind field9, we calculate the most likely vertical profile of the deep atmospheric and interior flow, and the latitudinal dependence of its depth. Furthermore, the even gravity harmonics J8 and J10 resulting from this flow profile also match the measurements, when taking into account the contribution of the interior structure10. These results indicate that the mass of the dynamical atmosphere is about one per cent of Jupiter’s total mass.

Statistics

Citations

Dimensions.ai Metrics
35 citations in Web of Science®
32 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute for Computational Science
Dewey Decimal Classification:530 Physics
Language:English
Date:7 March 2018
Deposited On:01 Mar 2019 14:55
Last Modified:17 Sep 2019 19:39
Publisher:Springer
ISSN:0028-0836
OA Status:Closed
Publisher DOI:https://doi.org/10.1038/nature25793

Download

Full text not available from this repository.
View at publisher

Get full-text in a library