Header

UZH-Logo

Maintenance Infos

Model selection for high b-value diffusion-weighted MRI of the prostate


Mazaheri, Yousef; Hötker, Andreas M; Shukla-Dave, Amita; Akin, Oguz; Hricak, Hedvig (2018). Model selection for high b-value diffusion-weighted MRI of the prostate. Magnetic Resonance Imaging, 46:21-27.

Abstract

PURPOSE To assess the abilities of the standard mono-exponential (ME), bi-exponential (BE), diffusion kurtosis (DK) and stretched exponential (SE) models to characterize diffusion signal in malignant and prostatic tissues and determine which of the four models best characterizes these tissues on a per-voxel basis. MATERIALS AND METHODS This institutional-review-board-approved, HIPAA-compliant, retrospective study included 55 patients (median age, 61years; range, 42-77years) with untreated, biopsy-proven PCa who underwent endorectal coil MRI at 3-Tesla, diffusion-weighted MRI acquired at eight b-values from 0 to 2000s/mm. Estimated parameters were apparent diffusion coefficent (ME model); diffusion coefficients for the fast (D) and slow (D) components and fraction of fast component, f (BE model); diffusion coefficient D, and kurtosis K (DK model); distributed diffusion coefficient DDC and α for (SE model). For one region-of-interest (ROI) in PZ and another in PCa in each patient, the corrected Akaike information criterion (AICc) and the Akaike weight (w) were calculated for each voxel. RESULTS Based on AICc and w, all non-monoexponential models outperformed the ME model in PZ and PCa. The DK model in PZ and SE model in PCa ROIs best fit the greatest average percentages of voxels (39% and 43%, respectively) and had the highest mean w (35±16×10 and 41±22×10, respectively). CONCLUSION DK and SE models best fit DWI data in PZ and PCa, and non-ME models consistently outperformed the ME model. Voxel-wise mapping of the preferential model demonstrated that the vast majority of voxels in either tissue type were best fit with one of the non-monoexponential models. At the given SNR levels, the maximum b-value of 2000s/mm is not sufficiently high to identify the preferred non-monoexponential model.

Abstract

PURPOSE To assess the abilities of the standard mono-exponential (ME), bi-exponential (BE), diffusion kurtosis (DK) and stretched exponential (SE) models to characterize diffusion signal in malignant and prostatic tissues and determine which of the four models best characterizes these tissues on a per-voxel basis. MATERIALS AND METHODS This institutional-review-board-approved, HIPAA-compliant, retrospective study included 55 patients (median age, 61years; range, 42-77years) with untreated, biopsy-proven PCa who underwent endorectal coil MRI at 3-Tesla, diffusion-weighted MRI acquired at eight b-values from 0 to 2000s/mm. Estimated parameters were apparent diffusion coefficent (ME model); diffusion coefficients for the fast (D) and slow (D) components and fraction of fast component, f (BE model); diffusion coefficient D, and kurtosis K (DK model); distributed diffusion coefficient DDC and α for (SE model). For one region-of-interest (ROI) in PZ and another in PCa in each patient, the corrected Akaike information criterion (AICc) and the Akaike weight (w) were calculated for each voxel. RESULTS Based on AICc and w, all non-monoexponential models outperformed the ME model in PZ and PCa. The DK model in PZ and SE model in PCa ROIs best fit the greatest average percentages of voxels (39% and 43%, respectively) and had the highest mean w (35±16×10 and 41±22×10, respectively). CONCLUSION DK and SE models best fit DWI data in PZ and PCa, and non-ME models consistently outperformed the ME model. Voxel-wise mapping of the preferential model demonstrated that the vast majority of voxels in either tissue type were best fit with one of the non-monoexponential models. At the given SNR levels, the maximum b-value of 2000s/mm is not sufficiently high to identify the preferred non-monoexponential model.

Statistics

Citations

Dimensions.ai Metrics

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Diagnostic and Interventional Radiology
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:February 2018
Deposited On:01 Nov 2018 07:27
Last Modified:01 Nov 2018 07:38
Publisher:Elsevier
ISSN:0730-725X
OA Status:Closed
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1016/j.mri.2017.10.003
PubMed ID:29031583

Download

Full text not available from this repository.
View at publisher

Get full-text in a library