Header

UZH-Logo

Maintenance Infos

Closed-Loop Insulin Delivery for Glycemic Control in Noncritical Care


Bally, Lia; Thabit, Hood; Hartnell, Sara; Andereggen, Eveline; Ruan, Yue; Wilinska, Malgorzata E; Evans, Mark L; Wertli, Maria M; Coll, Anthony P; Stettler, Christoph; Hovorka, Roman (2018). Closed-Loop Insulin Delivery for Glycemic Control in Noncritical Care. New England Journal of Medicine, 379(6):547-556.

Abstract

BACKGROUND In patients with diabetes, hospitalization can complicate the achievement of recommended glycemic targets. There is increasing evidence that a closed-loop delivery system (artificial pancreas) can improve glucose control in patients with type 1 diabetes. We wanted to investigate whether a closed-loop system could also improve glycemic control in patients with type 2 diabetes who were receiving noncritical care. METHODS In this randomized, open-label trial conducted on general wards in two tertiary hospitals located in the United Kingdom and Switzerland, we assigned 136 adults with type 2 diabetes who required subcutaneous insulin therapy to receive either closed-loop insulin delivery (70 patients) or conventional subcutaneous insulin therapy, according to local clinical practice (66 patients). The primary end point was the percentage of time that the sensor glucose measurement was within the target range of 100 to 180 mg per deciliter (5.6 to 10.0 mmol per liter) for up to 15 days or until hospital discharge. RESULTS The mean (±SD) percentage of time that the sensor glucose measurement was in the target range was 65.8±16.8% in the closed-loop group and 41.5±16.9% in the control group, a difference of 24.3±2.9 percentage points (95% confidence interval [CI], 18.6 to 30.0; P<0.001); values above the target range were found in 23.6±16.6% and 49.5±22.8% of the patients, respectively, a difference of 25.9±3.4 percentage points (95% CI, 19.2 to 32.7; P<0.001). The mean glucose level was 154 mg per deciliter (8.5 mmol per liter) in the closed-loop group and 188 mg per deciliter (10.4 mmol per liter) in the control group (P<0.001). There was no significant between-group difference in the duration of hypoglycemia (as defined by a sensor glucose measurement of <54 mg per deciliter; P=0.80) or in the amount of insulin that was delivered (median dose, 44.4 U and 40.2 U, respectively; P=0.50). No episode of severe hypoglycemia or clinically significant hyperglycemia with ketonemia occurred in either trial group. CONCLUSIONS Among inpatients with type 2 diabetes receiving noncritical care, the use of an automated, closed-loop insulin-delivery system resulted in significantly better glycemic control than conventional subcutaneous insulin therapy, without a higher risk of hypoglycemia. (Funded by Diabetes UK and others; ClinicalTrials.gov number, NCT01774565 .).

Abstract

BACKGROUND In patients with diabetes, hospitalization can complicate the achievement of recommended glycemic targets. There is increasing evidence that a closed-loop delivery system (artificial pancreas) can improve glucose control in patients with type 1 diabetes. We wanted to investigate whether a closed-loop system could also improve glycemic control in patients with type 2 diabetes who were receiving noncritical care. METHODS In this randomized, open-label trial conducted on general wards in two tertiary hospitals located in the United Kingdom and Switzerland, we assigned 136 adults with type 2 diabetes who required subcutaneous insulin therapy to receive either closed-loop insulin delivery (70 patients) or conventional subcutaneous insulin therapy, according to local clinical practice (66 patients). The primary end point was the percentage of time that the sensor glucose measurement was within the target range of 100 to 180 mg per deciliter (5.6 to 10.0 mmol per liter) for up to 15 days or until hospital discharge. RESULTS The mean (±SD) percentage of time that the sensor glucose measurement was in the target range was 65.8±16.8% in the closed-loop group and 41.5±16.9% in the control group, a difference of 24.3±2.9 percentage points (95% confidence interval [CI], 18.6 to 30.0; P<0.001); values above the target range were found in 23.6±16.6% and 49.5±22.8% of the patients, respectively, a difference of 25.9±3.4 percentage points (95% CI, 19.2 to 32.7; P<0.001). The mean glucose level was 154 mg per deciliter (8.5 mmol per liter) in the closed-loop group and 188 mg per deciliter (10.4 mmol per liter) in the control group (P<0.001). There was no significant between-group difference in the duration of hypoglycemia (as defined by a sensor glucose measurement of <54 mg per deciliter; P=0.80) or in the amount of insulin that was delivered (median dose, 44.4 U and 40.2 U, respectively; P=0.50). No episode of severe hypoglycemia or clinically significant hyperglycemia with ketonemia occurred in either trial group. CONCLUSIONS Among inpatients with type 2 diabetes receiving noncritical care, the use of an automated, closed-loop insulin-delivery system resulted in significantly better glycemic control than conventional subcutaneous insulin therapy, without a higher risk of hypoglycemia. (Funded by Diabetes UK and others; ClinicalTrials.gov number, NCT01774565 .).

Statistics

Citations

Dimensions.ai Metrics
26 citations in Web of Science®
34 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

30 downloads since deposited on 01 Nov 2018
29 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic and Policlinic for Internal Medicine
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:9 August 2018
Deposited On:01 Nov 2018 10:00
Last Modified:24 Sep 2019 23:50
Publisher:Massachusetts Medical Society
ISSN:0028-4793
OA Status:Green
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1056/NEJMoa1805233
PubMed ID:29940126

Download

Green Open Access

Download PDF  'Closed-Loop Insulin Delivery for Glycemic Control in Noncritical Care'.
Preview
Content: Published Version
Filetype: PDF
Size: 216kB
View at publisher