Abstract
The precise knowledge of the electric field in close proximity to metallic and dielectric surfaces is a prerequisite for pump-probe experiments aiming at the control of dynamic surface processes. We describe a model to reconstruct this electric field in immediate surface proximity from data taken in photoelectron THz-streaking experiments with an angle-resolved electron analyzer. Using Monte-Carlo simulations we are able to simulate streaking experiments on arbitrary surfaces with a variety of initial electron momentum distributions and to reconstruct the effective electric field at the surface. Our results validate the approach and suggest energy regimes for optimal pulse reconstruction.