Header

UZH-Logo

Maintenance Infos

Geographic clines in wing morphology relate to colonization history in New World but not Old World populations of yellow dung flies


Schäfer, Martin A; Berger, David; Rohner, Patrick T; Kjaersgaard, Anders; Bauerfeind, Stephanie S; Guillaume, Frédéric; Fox, Charles W; Blanckenhorn, Wolf U (2018). Geographic clines in wing morphology relate to colonization history in New World but not Old World populations of yellow dung flies. Evolution, 72(8):1629-1644.

Abstract

Geographic clines offer insights about putative targets and agents of natural selection as well as tempo and mode of adaptation. However, demographic processes can lead to clines that are indistinguishable from adaptive divergence. Using the widespread yellow dung fly Scathophaga stercoraria (Diptera: Scathophagidae), we examine quantitative genetic differentiation (QST) of wing shape across North America, Europe, and Japan, and compare this differentiation with that of ten microsatellites (FST). Morphometric analyses of 28 populations reared at three temperatures revealed significant thermal plasticity, sexual dimorphism, and geographic differentiation in wing shape. In North America morphological differentiation followed the decline in microsatellite variability along the presumed route of recent colonization from the southeast to the northwest. Across Europe, where S. stercoraria presumably existed for much longer time and where no molecular pattern of isolation by distance was evident, clinal variation was less pronounced despite significant morphological differentiation (QST>FST). Shape vector comparisons further indicate that thermal plasticity (hot‐to‐cold) does not mirror patterns of latitudinal divergence (south‐to‐north), as might have been expected under a scenario with temperature as the major agent of selection. Our findings illustrate the importance of detailed phylogeographic information when interpreting geographic clines of dispersal traits in an adaptive evolutionary framework.

Abstract

Geographic clines offer insights about putative targets and agents of natural selection as well as tempo and mode of adaptation. However, demographic processes can lead to clines that are indistinguishable from adaptive divergence. Using the widespread yellow dung fly Scathophaga stercoraria (Diptera: Scathophagidae), we examine quantitative genetic differentiation (QST) of wing shape across North America, Europe, and Japan, and compare this differentiation with that of ten microsatellites (FST). Morphometric analyses of 28 populations reared at three temperatures revealed significant thermal plasticity, sexual dimorphism, and geographic differentiation in wing shape. In North America morphological differentiation followed the decline in microsatellite variability along the presumed route of recent colonization from the southeast to the northwest. Across Europe, where S. stercoraria presumably existed for much longer time and where no molecular pattern of isolation by distance was evident, clinal variation was less pronounced despite significant morphological differentiation (QST>FST). Shape vector comparisons further indicate that thermal plasticity (hot‐to‐cold) does not mirror patterns of latitudinal divergence (south‐to‐north), as might have been expected under a scenario with temperature as the major agent of selection. Our findings illustrate the importance of detailed phylogeographic information when interpreting geographic clines of dispersal traits in an adaptive evolutionary framework.

Statistics

Citations

Dimensions.ai Metrics
6 citations in Web of Science®
8 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Evolutionary Biology and Environmental Studies
Dewey Decimal Classification:570 Life sciences; biology
590 Animals (Zoology)
Uncontrolled Keywords:Genetics, Ecology, Evolution, Behavior and Systematics, General Agricultural and Biological Sciences
Language:English
Date:1 August 2018
Deposited On:14 Nov 2018 17:16
Last Modified:24 Sep 2019 23:51
Publisher:Wiley-Blackwell Publishing, Inc.
ISSN:0014-3820
OA Status:Closed
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1111/evo.13517

Download

Full text not available from this repository.
View at publisher

Get full-text in a library