Header

UZH-Logo

Maintenance Infos

Comparative effects of the parasiticide ivermectin on survival and reproduction of adult sepsid flies


Conforti, Sheena; Dietrich, Jana; Kuhn, Thierry; van Koppenhagen, Nicola; Baur, Julian; Rohner, Patrick T; Blanckenhorn, Wolf U; Schäfer, Martin A (2018). Comparative effects of the parasiticide ivermectin on survival and reproduction of adult sepsid flies. Ecotoxicology and Environmental Safety, 163:215-222.

Abstract

Ivermectin is a veterinary pharmaceutical widely applied against parasites of livestock. Being effective against pests, it is also known to have lethal and sublethal effects on non-target organisms. While considerable research demonstrates the impact of ivermectin residues in livestock dung on the development and survival of dung feeding insect larvae, surprisingly little is known about its fitness effects on adults. We tested the impact of ivermectin on the survival of adult sepsid dung fly species (Diptera: Sepsidae) in the laboratory, using an ecologically relevant and realistic range of 69–1978 µg ivermectin/kg wet dung, and compared the sensitivities of larvae and adults in a phylogenetic framework. For one representative, relatively insensitive species, Sepsis punctum, we further investigated effects of ivermectin on female fecundity and male fertility. Moreover, we tested whether females can differentiate between ivermectin-spiked and non-contaminated dung in the wild. Adult sepsid flies exposed to ivermectin suffered increased mortality, whereby closely related species varied strongly in their sensitivity. Adult susceptibility to the drug correlated with larval susceptibility, showing a phylogenetic signal and demonstrating systemic variation in ivermectin sensitivity. Exposure of S. punctum females to even low concentrations of ivermectin lowered the number of eggs laid, while treatment of males reduced egg-to-adult offspring survival, presumably via impairment of sperm quality or quantity. The fitness impact was amplified when both parents were exposed. Lastly, sepsid flies did not discriminate against ivermectin-spiked dung in the field. Treatment of livestock with avermectins may thus have even more far-reaching sublethal ecological consequences than currently assumed via effects on adult dung-feeding insects.

Abstract

Ivermectin is a veterinary pharmaceutical widely applied against parasites of livestock. Being effective against pests, it is also known to have lethal and sublethal effects on non-target organisms. While considerable research demonstrates the impact of ivermectin residues in livestock dung on the development and survival of dung feeding insect larvae, surprisingly little is known about its fitness effects on adults. We tested the impact of ivermectin on the survival of adult sepsid dung fly species (Diptera: Sepsidae) in the laboratory, using an ecologically relevant and realistic range of 69–1978 µg ivermectin/kg wet dung, and compared the sensitivities of larvae and adults in a phylogenetic framework. For one representative, relatively insensitive species, Sepsis punctum, we further investigated effects of ivermectin on female fecundity and male fertility. Moreover, we tested whether females can differentiate between ivermectin-spiked and non-contaminated dung in the wild. Adult sepsid flies exposed to ivermectin suffered increased mortality, whereby closely related species varied strongly in their sensitivity. Adult susceptibility to the drug correlated with larval susceptibility, showing a phylogenetic signal and demonstrating systemic variation in ivermectin sensitivity. Exposure of S. punctum females to even low concentrations of ivermectin lowered the number of eggs laid, while treatment of males reduced egg-to-adult offspring survival, presumably via impairment of sperm quality or quantity. The fitness impact was amplified when both parents were exposed. Lastly, sepsid flies did not discriminate against ivermectin-spiked dung in the field. Treatment of livestock with avermectins may thus have even more far-reaching sublethal ecological consequences than currently assumed via effects on adult dung-feeding insects.

Statistics

Citations

Dimensions.ai Metrics
2 citations in Web of Science®
2 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Evolutionary Biology and Environmental Studies
Dewey Decimal Classification:570 Life sciences; biology
590 Animals (Zoology)
Uncontrolled Keywords:Public Health, Environmental and Occupational Health, Pollution, Health, Toxicology and Mutagenesis, General Medicine
Language:English
Date:1 November 2018
Deposited On:14 Nov 2018 17:20
Last Modified:14 Nov 2018 17:22
Publisher:Elsevier
ISSN:0147-6513
OA Status:Closed
Publisher DOI:https://doi.org/10.1016/j.ecoenv.2018.07.029

Download

Full text not available from this repository.
View at publisher

Get full-text in a library