Header

UZH-Logo

Maintenance Infos

Toward GW Calculations on Thousands of Atoms


Wilhelm, Jan; Golze, Dorothea; Talirz, Leopold; Hutter, Jürg; Pignedoli, Carlo A (2018). Toward GW Calculations on Thousands of Atoms. Journal of Physical Chemistry Letters, 9(2):306-312.

Abstract

The GW approximation of many-body perturbation theory is an accurate method for computing electron addition and removal energies of molecules and solids. In a canonical implementation, however, its computational cost is in the system size N, which prohibits its application to many systems of interest. We present a full-frequency GW algorithm in a Gaussian-type basis, whose computational cost scales with N2 to N3. The implementation is optimized for massively parallel execution on state-of-the-art supercomputers and is suitable for nanostructures and molecules in the gas, liquid or condensed phase, using either pseudopotentials or all electrons. We validate the accuracy of the algorithm on the GW100 molecular test set, finding mean absolute deviations of 35 meV for ionization potentials and 27 meV for electron affinities. Furthermore, we study the length-dependence of quasiparticle energies in armchair graphene nanoribbons of up to 1734 atoms in size, and compute the local density of states across a nanoscale heterojunction.

Abstract

The GW approximation of many-body perturbation theory is an accurate method for computing electron addition and removal energies of molecules and solids. In a canonical implementation, however, its computational cost is in the system size N, which prohibits its application to many systems of interest. We present a full-frequency GW algorithm in a Gaussian-type basis, whose computational cost scales with N2 to N3. The implementation is optimized for massively parallel execution on state-of-the-art supercomputers and is suitable for nanostructures and molecules in the gas, liquid or condensed phase, using either pseudopotentials or all electrons. We validate the accuracy of the algorithm on the GW100 molecular test set, finding mean absolute deviations of 35 meV for ionization potentials and 27 meV for electron affinities. Furthermore, we study the length-dependence of quasiparticle energies in armchair graphene nanoribbons of up to 1734 atoms in size, and compute the local density of states across a nanoscale heterojunction.

Statistics

Citations

Dimensions.ai Metrics
8 citations in Web of Science®
8 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, further contribution
Communities & Collections:07 Faculty of Science > Department of Chemistry
Dewey Decimal Classification:540 Chemistry
Language:English
Date:18 January 2018
Deposited On:21 Nov 2018 16:56
Last Modified:21 Nov 2018 17:07
Publisher:American Chemical Society (ACS)
ISSN:1948-7185
OA Status:Closed
Publisher DOI:https://doi.org/10.1021/acs.jpclett.7b02740

Download

Full text not available from this repository.
View at publisher

Get full-text in a library