Abstract
INTRODUCTION AND OBJECTIVES: Multiple androgen receptor (AR)-dependent and -independent resistance mechanisms limit the efficacy of current castration-resistant prostate cancer (CRPC) treatment. Novel N-terminal domain (NTD) binding AR-targeting compounds, including EPI-001 (EPI), have the promising ability to block constitutively active splice variants, which represent a major resistance mechanism in CRPC. Autophagy is a conserved lysosomal degradation pathway that acts as survival mechanism in cells exposed to anticancer treatments. We hypothesized, that promising NTD-AR treatment may upregulate autophagy and that a combination of NTD-AR and autophagy inhibition might therefore increase antitumor effects. METHODS: AR-expressing prostate cancer cell lines (LNCaP, LNCaP-EnzR) were treated with different concentrations of EPI (10, 25, 50 μM) and in combination with the autophagy inhibitors chloroquine (CHQ, 20 μM) or 3-methyladenine (3-MA, 5 mM). Cell proliferation was assessed by WST-1-assays after 1 and 7 days. Ethidium bromide and Annexin V were used to measure viability and apoptosis on day 7 after treatment. Autophagosome formation was detected by AUTOdot staining. In addition, autophagic activity was monitored by immunocytochemistry and Western blot (WES) for the expression of ATG5, Beclin1, LC3-I/II and p62. RESULTS: Treatment with EPI resulted in a dose-dependent reduction of cell growth and increased apoptosis in both cancer cell lines on day 7. In addition, EPI treatment demonstrated an upregulated autophagosome formation in LNCaP and LNCaP-EnzR cells. Assessment of autophagic activity by immunocytochemistry and WES revealed an increase of ATG5 and LC3-II expression and a decreased p62 expression in all EPI-treated cells. A combined treatment of EPI with autophagy inhibitors led to a further significant reduction of cell viability in both cell lines. CONCLUSIONS: Our results demonstrate that NTD targeting AR inhibition using EPI leads to an increased autophagic activity in LNCaP and LNCaP-EnzR prostate cancer cells. A combination of NTD AR blockage with simultaneous autophagy inhibition increases the antitumor effect of EPI in prostate cancer cells. Double treatment may offer a promising strategy to overcome resistance mechanisms in advanced prostate cancer.