Header

UZH-Logo

Maintenance Infos

A proline switch explains kinetic heterogeneity in a coupled folding and binding reaction


Zosel, Franziska; Mercadante, Davide; Nettels, Daniel; Schuler, Benjamin (2018). A proline switch explains kinetic heterogeneity in a coupled folding and binding reaction. Nature Communications, 9:3332.

Abstract

The interactions of intrinsically disordered proteins (IDPs) with their molecular targets are essential for the regulation of many cellular processes. IDPs can perform their functions while disordered, and they may fold to structured conformations on binding. Here we show that the cis/trans isomerization of peptidyl-prolyl bonds can have a pronounced effect on the interactions of IDPs. By single-molecule spectroscopy, we identify a conserved proline residue in NCBD (the nuclear-coactivator binding domain of CBP) whose cis/trans isomerization in the unbound state modulates the association and dissociation rates with its binding partner, ACTR. As a result, NCBD switches on a time scale of tens of seconds between two populations that differ in their affinities to ACTR by about an order of magnitude. Molecular dynamics simulations indicate as a cause reduced packing of the complex for the cis isomer. Peptidyl-prolyl cis/trans isomerization may be an important previously unidentified mechanism for regulating IDP interactions.

Abstract

The interactions of intrinsically disordered proteins (IDPs) with their molecular targets are essential for the regulation of many cellular processes. IDPs can perform their functions while disordered, and they may fold to structured conformations on binding. Here we show that the cis/trans isomerization of peptidyl-prolyl bonds can have a pronounced effect on the interactions of IDPs. By single-molecule spectroscopy, we identify a conserved proline residue in NCBD (the nuclear-coactivator binding domain of CBP) whose cis/trans isomerization in the unbound state modulates the association and dissociation rates with its binding partner, ACTR. As a result, NCBD switches on a time scale of tens of seconds between two populations that differ in their affinities to ACTR by about an order of magnitude. Molecular dynamics simulations indicate as a cause reduced packing of the complex for the cis isomer. Peptidyl-prolyl cis/trans isomerization may be an important previously unidentified mechanism for regulating IDP interactions.

Statistics

Citations

Dimensions.ai Metrics
3 citations in Web of Science®
3 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

7 downloads since deposited on 23 Nov 2018
7 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Department of Biochemistry
07 Faculty of Science > Department of Biochemistry
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:20 August 2018
Deposited On:23 Nov 2018 14:32
Last Modified:01 Dec 2018 01:18
Publisher:Nature Publishing Group
ISSN:2041-1723
OA Status:Gold
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1038/s41467-018-05725-0
PubMed ID:30127362

Download

Download PDF  'A proline switch explains kinetic heterogeneity in a coupled folding and binding reaction'.
Preview
Content: Published Version
Filetype: PDF
Size: 2MB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)